322 research outputs found

    Effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems

    Get PDF
    We study the effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems. For this purpose, the Gierer-Meinhardt model of pattern formation is considered. The cases we study are: (i)randomness in the underlying lattice structure, (ii)the case in which there is a probablity p that at a lattice site both reaction and diffusion occur, otherwise there is only diffusion and lastly, the effect of (iii) anisotropic and (iv) random diffusion coefficients on the formation of Turing patterns. The general conclusion is that the Turing mechanism of pattern formation is fairly robust in the presence of randomness and anisotropy.Comment: 11 pages LaTeX, 14 postscript figures, accepted in Phys. Rev.

    Submillimeter spectroscopy of southern hot cores: NGC6334(I) and G327.3-0.6

    Get PDF
    High-mass star-forming regions are known to have a rich molecular spectrum from many species. Some of the very highly excited lines are emitted from very hot and dense gas close to the central object(s). The physics and chemistry of the inner cores of two high mass star forming regions, NGC6334(I) and G327.3-0.6, shall be characterized. Submillimeter line surveys with the APEX telescope provide spectra which sample many molecular lines at high excitation stages. Partial spectral surveys were obtained, the lines were identified, physical parameters were determined through fitting of the spectra. Both sources show similar spectra that are comparable to that of the only other high mass star forming region ever surveyed in this frequency range}, Orion-KL, but with an even higher line density. Evidence for very compact, very hot sources is found.Comment: APEX A&A special issue, accepte

    Dynamical effects induced by long range activation in a nonequilibrium reaction-diffusion system

    Full text link
    We both show experimentally and numerically that the time scales separation introduced by long range activation can induce oscillations and excitability in nonequilibrium reaction-diffusion systems that would otherwise only exhibit bistability. Namely, we show that the Chlorite-Tetrathionate reaction, where autocatalytic species diffuses faster than the substrates, the spatial bistability domain in the nonequilibrium phase diagram is extended with oscillatory and excitability domains. A simple model and a more realistic model qualitatively account for the observed behavior. The latter model provides quantitative agreement with the experiments.Comment: 19 pages + 9 figure

    CO(1-0), CO(2-1) and Neutral Gas in NGC 6946: Molecular Gas in a Late-Type, Gas Rich, Spiral Galaxy

    Full text link
    We present "On The Fly" maps of the CO(1-0) and CO(2-1) emission covering a 10' X 10' region of the NGC 6946. Using our CO maps and archival VLA HI observations we create a total gas surface density map, Sigma_gas, for NGC 6946. The predominantly molecular inner gas disk transitions smoothly into an atomic outer gas disk, with equivalent atomic and molecular gas surface densities at R = 3.5' (6 kpc). We estimate that the total H2 mass is 3 X 10^9 Mo, roughly 1/3 of the interstellar hydrogen gas mass, and about 2% of the dynamical mass of the galaxy at our assumed distance of 6 Mpc. The value of the CO(2-1)/CO(1-0) line ratio ranges from 0.35 to 2; 50% of the map is covered by very high ratio, >1, gas. The very high ratios are predominantly from interarm regions and appear to indicate the presence of wide-spread optically thin gas. Star formation tracers are better correlated with the total neutral gas disk than with the molecular gas by itself implying SFR is proportional to Sigma_gas. Using the 100 FIR and 21 cm continuum from NGC 6946 as star formation tracers, we arrive at a gas consumption timescale of 2.8 Gyr, which is relatively uniform across the disk. The high star formation rate at the nucleus appears to be due to a large accumulation of molecular gas rather than a large increase in the star formation efficiency. The mid-plane gas pressure in the outer (R > 10 kpc) HI arms of NGC 6946 is close to the value at the radial limit (10 kpc) of our observed CO disk. If the mid-plane gas pressure is a factor for the formation of molecular clouds, these outer HI gas arms should contain molecular gas which we do not see because they are beyond our detection limit

    Submillimeter mapping and analysis of cold dust condensations in the Orion M42 star forming complex

    Get PDF
    We present here the continuum submillimeter maps of the molecular cloud around the M42 Nebula in the Orion region. These have been obtained in four wavelength bands (200, 260, 360 and 580 microns) with the ProNaOS two meter balloon-borne telescope. The area covered is 7 parsecs wide (50 arcmin at a distance of 470 pc) with a spatial resolution of about 0.4 parsec. Thanks to the high sensitivity to faint surface brightness gradients, we have found several cold condensations with temperatures ranging from 12 to 17 K, within 3 parsecs of the dense ridge. The statistical analysis of the temperature and spectral index spatial distribution shows an evidence of an inverse correlation between these two parameters. Being invisible in the IRAS 100 micron survey, some cold clouds are likely to be the seeds for future star formation activity going on in the complex. We estimate their masses and we show that two of them have masses higher than their Jeans masses, and may be gravitationally unstable.Comment: 4 figures, The Astrophysical Journal, Main Journal, in pres

    A map of OMC-1 in CO 9-8

    Full text link
    The distribution of 12C16O J=9-8 (1.037 THz) emission has been mapped in OMC-1 at 35 points with 84" resolution. This is the first map of this source in this transition and only the second velocity-resolved ground-based observation of a line in the terahertz frequency band. There is emission present at all points in the map, a region roughly 4' by 6' in size, with peak antenna temperature dropping only near the edges. Away from the Orion KL outflow, the velocity structure suggests that most of the emission comes from the OMC-1 photon-dominated region, with a typical linewidthof 3-6 km/s. Large velocity gradient modeling of the emission in J=9-8 and six lower transitions suggests that the lines originate in regions with temperatures around 120 K and densities of at least 10^(3.5) cm^(-3) near theta^(1) C Ori and at the Orion Bar, and from 70 K gas at around 10^(4) cm^(-3) southeast and west of the bar. These observations are among the first made with the 0.8 m Smithsonian Astrophysical Observatory Receiver Lab Telescope, a new instrument designed to observe at frequencies above 1 THz from an extremely high and dry site in northern Chile.Comment: Minor changes to references, text to match ApJ versio

    Turing Instability in a Boundary-fed System

    Get PDF
    The formation of localized structures in the chlorine dioxide-idodine-malonic acid (CDIMA) reaction-diffusion system is investigated numerically using a realistic model of this system. We analyze the one-dimensional patterns formed along the gradients imposed by boundary feeds, and study their linear stability to symmetry-breaking perturbations (Turing instability) in the plane transverse to these gradients. We establish that an often-invoked simple local linear analysis which neglects longitudinal diffusion is inappropriate for predicting the linear stability of these patterns. Using a fully nonuniform analysis, we investigate the structure of the patterns formed along the gradients and their stability to transverse Turing pattern formation as a function of the values of two control parameters: the malonic acid feed concentration and the size of the reactor in the dimension along the gradients. The results from this investigation are compared with existing experiments.Comment: 41 pages, 18 figures, to be published in Physical Review

    A Uniform CO Survey of the Molecular Clouds in Orion and Monoceros

    Full text link
    We report the results of a new large scale survey of the Orion-Monoceros complex of molecular clouds made in the J = 1->0 line of CO with the Harvard-Smithsonian 1.2m millimetre-wave telescope. The survey consists of 52,288 uniformly spaced spectra that cover an area of 432 square degrees on the sky and is the most sensitive large-scale survey of the region to date. Distances to the constituent molecular clouds of the complex, estimated from an analysis of foreground and background stars, have provided information on the three dimensional structure of the entire complex.Comment: Accepted for publication in Astronomy and Astrophysics. 19 pages with 17 colour figures - 39 if you count the sub-figures separately. The figures here have been bit-mapped with some loss of quality and beauty. The paper version in A&A will be in greyscale with the on-line version in colour. In the meantime the colour version can be obtained by following links at http://www.star.bris.ac.uk/mrwm . The 9MB PostScript is recommended if you have appropriate bandwidth or otherwise the 2.3MB PDF is usabl

    TIMASSS: The IRAS16293-2422 Millimeter And Submillimeter Spectral Survey. I. Observations, calibration and analysis of the line kinematics

    Get PDF
    While unbiased surveys observable from ground-based telescopes have previously been obtained towards several high mass protostars, very little exists on low mass protostars. To fill up this gap, we carried out a complete spectral survey of the bands at 3, 2, 1 and 0.8 mm towards the solar type protostar IRAS16293-2422. The observations covered about 200\,GHz and were obtained with the IRAM-30m and JCMT-15m telescopes. Particular attention was devoted to the inter-calibration of the obtained spectra with previous observations. All the lines detected with more than 3 sigma and free from obvious blending effects were fitted with Gaussians to estimate their basic kinematic properties. More than 4000 lines were detected (with sigma \geq 3) and identified, yielding a line density of approximatively 20 lines per GHz, comparable to previous surveys in massive hot cores. The vast majority (~2/3) of the lines are weak and due to complex organic molecules. The analysis of the profiles of more than 1000 lines belonging 70 species firmly establishes the presence of two distinct velocity components, associated with the two objects, A and B, forming the IRAS16293-2422 binary system. In the source A, the line widths of several species increase with the upper level energy of the transition, a behavior compatible with gas infalling towards a ~1 Mo object. The source B, which does not show this effect, might have a much lower central mass of ~0.1 Mo. The difference in the rest velocities of both objects is consistent with the hypothesis that the source B rotates around the source A. This spectral survey, although obtained with single-dish telescope with a low spatial resolution, allows to separate the emission from 2 different components, thanks to the large number of lines detected. The data of the survey are public and can be retrieved on the web site http://www-laog.obs.ujf-grenoble.fr/heberges/timasss.Comment: 41 pages (26 pages of online Tables), 7 Tables and 6 Figure

    Nitrogen hydrides in the cold envelope of IRAS16293-2422

    Get PDF
    Nitrogen is the fifth most abundant element in the Universe, yet the gas-phase chemistry of N-bearing species remains poorly understood. Nitrogen hydrides are key molecules of nitrogen chemistry. Their abundance ratios place strong constraints on the production pathways and reaction rates of nitrogen-bearing molecules. We observed the class 0 protostar IRAS16293-2422 with the heterodyne instrument HIFI, covering most of the frequency range from 0.48 to 1.78~THz at high spectral resolution. The hyperfine structure of the amidogen radical o-NH2 is resolved and seen in absorption against the continuum of the protostar. Several transitions of ammonia from 1.2 to 1.8~THz are also seen in absorption. These lines trace the low-density envelope of the protostar. Column densities and abundances are estimated for each hydride. We find that NH:NH2:NH3=5:1:300. {Dark clouds chemical models predict steady-state abundances of NH2 and NH3 in reasonable agreement with the present observations, whilst that of NH is underpredicted by more than one order of magnitude, even using updated kinetic rates. Additional modelling of the nitrogen gas-phase chemistry in dark-cloud conditions is necessary before having recourse to heterogen processes
    corecore