174 research outputs found

    Understanding stellar activity-induced radial velocity jitter using simultaneous K2 photometry and HARPS RV measurements

    Get PDF
    One of the best ways to improve our understanding of the stellar activity-induced signal in radial velocity (RV) measurements is through simultaneous high-precision photometric and RV observations. This is of prime importance to mitigate the RV signal induced by stellar activity and therefore unveil the presence of low-mass exoplanets. The K2 Campaign 7 and 8 field-of-views were located in the southern hemisphere, and provided a unique opportunity to gather unprecedented simultaneous high precision photometric observation with K2 and high-precision RV measurements with the HARPS spectrograph to study the relationship between photometric variability and RV jitter. We observed nine stars with different levels of activity; from quiet to very active. We probe the presence of any meaningful relation between measured RV jitter and the simultaneous photometric variation, and also other activity indicators (e.g. BIS, FWHM, logRHKlogR'_{HK}, and F8), by evaluating the strength and significance of the correlation between RVs and each indicator. We found that for the case of very active stars, strong and significant correlations exist between almost all the observables and measured RVs; however, for lower activity levels the correlations become random. Except for the F8 which its strong correlation with RV jitter persists over a wide range of stellar activity level, and thus our result suggests that F8 might be a powerful proxy for activity induced RV jitter. Moreover, we examine the capability of two state-of-the-art modeling techniques, namely the FF' method and SOAP2.0, in accurately predicting the RV jitter amplitude using the simultaneous photometric observation. We found that for the very active stars both techniques can reasonably well predict the amplitude of the RV jitter, however, at lower activity levels the FF' method underpredicts the RV jitter amplitude.Comment: 13 pages, 7 figures, 2 tables, accepted for publication in A&

    A geometrical origin for the covariant entropy bound

    Full text link
    Causal diamond-shaped subsets of space-time are naturally associated with operator algebras in quantum field theory, and they are also related to the Bousso covariant entropy bound. In this work we argue that the net of these causal sets to which are assigned the local operator algebras of quantum theories should be taken to be non orthomodular if there is some lowest scale for the description of space-time as a manifold. This geometry can be related to a reduction in the degrees of freedom of the holographic type under certain natural conditions for the local algebras. A non orthomodular net of causal sets that implements the cutoff in a covariant manner is constructed. It gives an explanation, in a simple example, of the non positive expansion condition for light-sheet selection in the covariant entropy bound. It also suggests a different covariant formulation of entropy bound.Comment: 20 pages, 8 figures, final versio

    A transiting companion to the eclipsing binary KIC002856960

    Full text link
    We present an early result from an automated search of Kepler eclipsing binary systems for circumbinary companions. An intriguing tertiary signal has been discovered in the short period eclipsing binary KIC002856960. This third body leads to transit-like features in the light curve occurring every 204.2 days, while the two other components of the system display eclipses on a 6.2 hour period. The variations due to the tertiary body last for a duration of \sim1.26 days, or 4.9 binary orbital periods. During each crossing of the binary orbit with the tertiary body, multiple individual transits are observed as the close binary stars repeatedly move in and out of alignment with the tertiary object. We are at this stage unable to distinguish between a planetary companion to a close eclipsing binary, or a hierarchical triply eclipsing system of three stars. Both possibilities are explored, and the light curves presented.Comment: Accepted into A&A Letters (5 pages & 3 figures

    A spectral survey of an ultra-hot Jupiter: Detection of metals in the transmission spectrum of KELT-9 b

    Get PDF
    Context: KELT-9 b exemplifies a newly emerging class of short-period gaseous exoplanets that tend to orbit hot, early type stars - termed ultra-hot Jupiters. The severe stellar irradiation heats their atmospheres to temperatures of 4,000\sim 4,000 K, similar to the photospheres of dwarf stars. Due to the absence of aerosols and complex molecular chemistry at such temperatures, these planets offer the potential of detailed chemical characterisation through transit and day-side spectroscopy. Studies of their chemical inventories may provide crucial constraints on their formation process and evolution history. Aims: To search the optical transmission spectrum of KELT-9 b for absorption lines by metals using the cross-correlation technique. Methods: We analyse 2 transits observed with the HARPS-N spectrograph. We use an isothermal equilibrium chemistry model to predict the transmission spectrum for each of the neutral and singly-ionized atoms with atomic numbers between 3 and 78. Of these, we identify the elements that are expected to have spectral lines in the visible wavelength range and use those as cross-correlation templates. Results: We detect absorption of Na I, Cr II, Sc II and Y II, and confirm previous detections of Mg I, Fe I, Fe II and Ti II. In addition, we find evidence of Ca I, Cr I, Co I, and Sr II that will require further observations to verify. The detected absorption lines are significantly deeper than model predictions, suggesting that material is transported to higher altitudes where the density is enhanced compared to a hydrostatic profile. There appears to be no significant blue-shift of the absorption spectrum due to a net day-to-night side wind. In particular, the strong Fe II feature is shifted by 0.18±0.270.18 \pm 0.27 km~s1^{-1}, consistent with zero. Using the orbital velocity of the planet we revise the steller and planetary masses and radii.Comment: Submitted to Astronomy and Astrophysics on January 18, 2019. Accepted on May 3, 2019. 26 pages, 11 figure

    Development of a new, wireless acquisition system for EMATs compatible with the robotics operating system

    Get PDF
    The deployment of transducers to perform in situ inspections of industrial components can be complicated, and in many cases is still performed manually by a team of operators, which involves significant costs and can be dangerous. Robots capable of deploying probes in difficult to access locations are becoming available. Electromagnetic acoustic transducers (EMAT) are well suited to be used with robots since they are noncontact transducers that do not require a coupling medium, and can easily perform scans. However, existing acquisition systems for EMATs are generally not suitable to be directly mounted on robots. In this paper, a new wireless acquisition system for EMATs is presented. The system is standalone, it transmits the inspection data over WiFi, and is compatible with the robotics operating system (ROS). In addition, it is designed to be modular, small and lightweight so that it can be easily mounted on robots. The system design in terms of hardware and software is described in this paper. The resulting performance of the system is also reported

    Rotation of planet-harbouring stars

    Full text link
    The rotation rate of a star has important implications for the detectability, characterisation and stability of any planets that may be orbiting it. This chapter gives a brief overview of stellar rotation before describing the methods used to measure the rotation periods of planet host stars, the factors affecting the evolution of a star's rotation rate, stellar age estimates based on rotation, and an overview of the observed trends in the rotation properties of stars with planets.Comment: 16 pages, 4 figures: Invited review to appear in 'Handbook of Exoplanets', Springer Reference Works, edited by Hans J. Deeg and Juan Antonio Belmont

    Shear waves with orthogonal polarisations for thickness measurement and crack detection using EMATs

    Get PDF
    The use of polarised shear waves to detect the presence of crack-like defects seems to have received little or no attention in the past. The authors believe that the main reason for this appears to be the lack of a device with the capability to excite shear waves of different polarisations. In this paper, the authors, first, present the design of an EMAT that permits the excitation of two orthogonally polarised shear waves in metallic materials by means of two coils that are orthogonal with respect to each other. This is then followed by a 3D finite element analysis of the wavefield generated by the EMAT and its interactions with crack-like defects of different sizes, positions and orientations. Then a methodology of how this EMAT can be used to simultaneously measure material thickness and detect crack-like defects in pulse-echo mode is introduced. Good agreement between the finite element simulation and experimental results was observed which makes the presented technique a potential new method for simultaneous thickness measurements and crack detection

    The Rossiter-McLaughlin effect in Exoplanet Research

    Full text link
    The Rossiter-McLaughlin effect occurs during a planet's transit. It provides the main means of measuring the sky-projected spin-orbit angle between a planet's orbital plane, and its host star's equatorial plane. Observing the Rossiter-McLaughlin effect is now a near routine procedure. It is an important element in the orbital characterisation of transiting exoplanets. Measurements of the spin-orbit angle have revealed a surprising diversity, far from the placid, Kantian and Laplacian ideals, whereby planets form, and remain, on orbital planes coincident with their star's equator. This chapter will review a short history of the Rossiter-McLaughlin effect, how it is modelled, and will summarise the current state of the field before describing other uses for a spectroscopic transit, and alternative methods of measuring the spin-orbit angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H. Deeg & J.A. Belmont
    corecore