174 research outputs found
Understanding stellar activity-induced radial velocity jitter using simultaneous K2 photometry and HARPS RV measurements
One of the best ways to improve our understanding of the stellar
activity-induced signal in radial velocity (RV) measurements is through
simultaneous high-precision photometric and RV observations. This is of prime
importance to mitigate the RV signal induced by stellar activity and therefore
unveil the presence of low-mass exoplanets. The K2 Campaign 7 and 8
field-of-views were located in the southern hemisphere, and provided a unique
opportunity to gather unprecedented simultaneous high precision photometric
observation with K2 and high-precision RV measurements with the HARPS
spectrograph to study the relationship between photometric variability and RV
jitter. We observed nine stars with different levels of activity; from quiet to
very active. We probe the presence of any meaningful relation between measured
RV jitter and the simultaneous photometric variation, and also other activity
indicators (e.g. BIS, FWHM, , and F8), by evaluating the strength
and significance of the correlation between RVs and each indicator. We found
that for the case of very active stars, strong and significant correlations
exist between almost all the observables and measured RVs; however, for lower
activity levels the correlations become random. Except for the F8 which its
strong correlation with RV jitter persists over a wide range of stellar
activity level, and thus our result suggests that F8 might be a powerful proxy
for activity induced RV jitter. Moreover, we examine the capability of two
state-of-the-art modeling techniques, namely the FF' method and SOAP2.0, in
accurately predicting the RV jitter amplitude using the simultaneous
photometric observation. We found that for the very active stars both
techniques can reasonably well predict the amplitude of the RV jitter, however,
at lower activity levels the FF' method underpredicts the RV jitter amplitude.Comment: 13 pages, 7 figures, 2 tables, accepted for publication in A&
A geometrical origin for the covariant entropy bound
Causal diamond-shaped subsets of space-time are naturally associated with
operator algebras in quantum field theory, and they are also related to the
Bousso covariant entropy bound. In this work we argue that the net of these
causal sets to which are assigned the local operator algebras of quantum
theories should be taken to be non orthomodular if there is some lowest scale
for the description of space-time as a manifold. This geometry can be related
to a reduction in the degrees of freedom of the holographic type under certain
natural conditions for the local algebras. A non orthomodular net of causal
sets that implements the cutoff in a covariant manner is constructed. It gives
an explanation, in a simple example, of the non positive expansion condition
for light-sheet selection in the covariant entropy bound. It also suggests a
different covariant formulation of entropy bound.Comment: 20 pages, 8 figures, final versio
A transiting companion to the eclipsing binary KIC002856960
We present an early result from an automated search of Kepler eclipsing
binary systems for circumbinary companions. An intriguing tertiary signal has
been discovered in the short period eclipsing binary KIC002856960. This third
body leads to transit-like features in the light curve occurring every 204.2
days, while the two other components of the system display eclipses on a 6.2
hour period. The variations due to the tertiary body last for a duration of
\sim1.26 days, or 4.9 binary orbital periods. During each crossing of the
binary orbit with the tertiary body, multiple individual transits are observed
as the close binary stars repeatedly move in and out of alignment with the
tertiary object. We are at this stage unable to distinguish between a planetary
companion to a close eclipsing binary, or a hierarchical triply eclipsing
system of three stars. Both possibilities are explored, and the light curves
presented.Comment: Accepted into A&A Letters (5 pages & 3 figures
A spectral survey of an ultra-hot Jupiter: Detection of metals in the transmission spectrum of KELT-9 b
Context: KELT-9 b exemplifies a newly emerging class of short-period gaseous
exoplanets that tend to orbit hot, early type stars - termed ultra-hot
Jupiters. The severe stellar irradiation heats their atmospheres to
temperatures of K, similar to the photospheres of dwarf stars. Due
to the absence of aerosols and complex molecular chemistry at such
temperatures, these planets offer the potential of detailed chemical
characterisation through transit and day-side spectroscopy. Studies of their
chemical inventories may provide crucial constraints on their formation process
and evolution history.
Aims: To search the optical transmission spectrum of KELT-9 b for absorption
lines by metals using the cross-correlation technique.
Methods: We analyse 2 transits observed with the HARPS-N spectrograph. We use
an isothermal equilibrium chemistry model to predict the transmission spectrum
for each of the neutral and singly-ionized atoms with atomic numbers between 3
and 78. Of these, we identify the elements that are expected to have spectral
lines in the visible wavelength range and use those as cross-correlation
templates.
Results: We detect absorption of Na I, Cr II, Sc II and Y II, and confirm
previous detections of Mg I, Fe I, Fe II and Ti II. In addition, we find
evidence of Ca I, Cr I, Co I, and Sr II that will require further observations
to verify. The detected absorption lines are significantly deeper than model
predictions, suggesting that material is transported to higher altitudes where
the density is enhanced compared to a hydrostatic profile. There appears to be
no significant blue-shift of the absorption spectrum due to a net day-to-night
side wind. In particular, the strong Fe II feature is shifted by km~s, consistent with zero. Using the orbital velocity of the
planet we revise the steller and planetary masses and radii.Comment: Submitted to Astronomy and Astrophysics on January 18, 2019. Accepted
on May 3, 2019. 26 pages, 11 figure
Development of a new, wireless acquisition system for EMATs compatible with the robotics operating system
The deployment of transducers to perform in situ inspections of industrial components can be complicated, and in many cases is still performed manually by a team of operators, which involves significant costs and can be dangerous. Robots capable of deploying probes in difficult to access locations are becoming available. Electromagnetic acoustic transducers (EMAT) are well suited to be used with robots since they are noncontact transducers that do not require a coupling medium, and can easily perform scans. However, existing acquisition systems for EMATs are generally not suitable to be directly mounted on robots. In this paper, a new wireless acquisition system for EMATs is presented. The system is standalone, it transmits the inspection data over WiFi, and is compatible with the robotics operating system (ROS). In addition, it is designed to be modular, small and lightweight so that it can be easily mounted on robots. The system design in terms of hardware and software is described in this paper. The resulting performance of the system is also reported
Rotation of planet-harbouring stars
The rotation rate of a star has important implications for the detectability,
characterisation and stability of any planets that may be orbiting it. This
chapter gives a brief overview of stellar rotation before describing the
methods used to measure the rotation periods of planet host stars, the factors
affecting the evolution of a star's rotation rate, stellar age estimates based
on rotation, and an overview of the observed trends in the rotation properties
of stars with planets.Comment: 16 pages, 4 figures: Invited review to appear in 'Handbook of
Exoplanets', Springer Reference Works, edited by Hans J. Deeg and Juan
Antonio Belmont
Shear waves with orthogonal polarisations for thickness measurement and crack detection using EMATs
The use of polarised shear waves to detect the presence of crack-like defects seems to have received little or no attention in the past. The authors believe that the main reason for this appears to be the lack of a device with the capability to excite shear waves of different polarisations. In this paper, the authors, first, present the design of an EMAT that permits the excitation of two orthogonally polarised shear waves in metallic materials by means of two coils that are orthogonal with respect to each other. This is then followed by a 3D finite element analysis of the wavefield generated by the EMAT and its interactions with crack-like defects of different sizes, positions and orientations. Then a methodology of how this EMAT can be used to simultaneously measure material thickness and detect crack-like defects in pulse-echo mode is introduced. Good agreement between the finite element simulation and experimental results was observed which makes the presented technique a potential new method for simultaneous thickness measurements and crack detection
The Rossiter-McLaughlin effect in Exoplanet Research
The Rossiter-McLaughlin effect occurs during a planet's transit. It provides
the main means of measuring the sky-projected spin-orbit angle between a
planet's orbital plane, and its host star's equatorial plane. Observing the
Rossiter-McLaughlin effect is now a near routine procedure. It is an important
element in the orbital characterisation of transiting exoplanets. Measurements
of the spin-orbit angle have revealed a surprising diversity, far from the
placid, Kantian and Laplacian ideals, whereby planets form, and remain, on
orbital planes coincident with their star's equator. This chapter will review a
short history of the Rossiter-McLaughlin effect, how it is modelled, and will
summarise the current state of the field before describing other uses for a
spectroscopic transit, and alternative methods of measuring the spin-orbit
angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H.
Deeg & J.A. Belmont
- …
