5,513 research outputs found
Recommended from our members
Product line design
We characterize the product line choice and pricing of a monopolist from the upper envelope of net marginal revenue curves to the individual product demand functions. The equilibrium product line constitutes those varieties yielding the highest upper envelope. In a generalized vertical differentiation framework, the equilibrium line is exactly the same as the first-best socially optimal line. These upper envelope and first-best optimal line findings extend to symmetric Cournot oligopoly
Fluid Flows of Mixed Regimes in Porous Media
In porous media, there are three known regimes of fluid flows, namely,
pre-Darcy, Darcy and post-Darcy. Because of their different natures, these are
usually treated separately in literature. To study complex flows when all three
regimes may be present in different portions of a same domain, we use a single
equation of motion to unify them. Several scenarios and models are then
considered for slightly compressible fluids. A nonlinear parabolic equation for
the pressure is derived, which is degenerate when the pressure gradient is
either small or large. We estimate the pressure and its gradient for all time
in terms of initial and boundary data. We also obtain their particular bounds
for large time which depend on the asymptotic behavior of the boundary data but
not on the initial one. Moreover, the continuous dependence of the solutions on
initial and boundary data, and the structural stability for the equation are
established.Comment: 33 page
Variable frame based Max-Weight algorithms for networks with switchover delay
This paper considers the scheduling problem for networks with interference constraints and switchover delays, where it takes a nonzero time to reconfigure each service schedule. Switchover delay occurs in many telecommunication applications such as satellite, optical or delay tolerant networks (DTNs). Under zero switchover delay it is well known that the Max-Weight algorithm is throughput-optimal without requiring knowledge of the arrival rates. However, we show that this property of Max-Weight no longer holds when there is a nonzero switchover delay. We propose a class of variable frame based Max-Weight (VFMW) algorithms which employ the Max-Weight schedule corresponding to the beginning of the frame during an interval of duration dependent on the queue sizes. The VFMW algorithms dynamically adapt the frame sizes to the stochastic arrivals and provide throughput-optimality without requiring knowledge of the arrival rates. Numerical results regarding the application of the VFMW algorithms to DTN and optical networks demonstrate a good delay performance.National Science Foundation (U.S.) (NSF grant CNS-0626781)National Science Foundation (U.S.) (NSF grant CNS-0915988)United States. Army Research Office (ARO Muri grant number W911NF-08-1-0238
Time-to-birth prediction models and the influence of expert opinions
Preterm birth is the leading cause of death among children under five years old. The pathophysiology and etiology of preterm labor are not yet fully understood. This causes a large number of unnecessary hospitalizations due to high--sensitivity clinical policies, which has a significant psychological and economic impact. In this study, we present a predictive model, based on a new dataset containing information of 1,243 admissions, that predicts whether a patient will give birth within a given time after admission. Such a model could provide support in the clinical decision-making process. Predictions for birth within 48 h or 7 days after admission yield an Area Under the Curve of the Receiver Operating Characteristic (AUC) of 0.72 for both tasks. Furthermore, we show that by incorporating predictions made by experts at admission, which introduces a potential bias, the prediction effectiveness increases to an AUC score of 0.83 and 0.81 for these respective tasks
Measuring movement fluency during the sit-to-walk task
Restoring movement fluency is a key focus for physical rehabilitation; it's measurement, however, lacks objectivity. The purpose of this study was to find whether measurable movement fluency variables differed between groups of adults with different movement abilities whilst performing the sit-to-walk (STW) movement. The movement fluency variables were: (1) hesitation during movement (reduction in forward velocity of the centre of mass; CoM), (2) coordination (percentage of temporal overlap of joint rotations) and (3) smoothness (number of inflections in the CoM jerk signal)
Multiwavelength Observations of 1ES 1959+650, One Year After the Strong Outburst of 2002
In April-May 2003, the blazar 1ES 1959+650 showed an increased level of X-ray
activity. This prompted a multiwavelength observation campaign with the Whipple
10 m gamma-ray telescope, the Rossi X-ray Timing Explorer, the Bordeaux Optical
Observatory, and the University of Michigan Radio Astrophysical Observatory. We
present the multiwavelength data taken from May 2, 2003 to June 7, 2003 and
compare the source characteristics with those measured during observations
taken during the years 2000 and 2002. The X-ray observations gave a data set
with high signal-to-noise light curves and energy spectra; however, the
gamma-ray observations did not reveal a major TeV gamma-ray flare. Furthermore,
we find that the radio and optical fluxes do not show statistically significant
deviations from those measured during the 2002 flaring periods. While the X-ray
flux and X-ray photon index appear correlated during subsequent observations,
the apparent correlation evolved significantly between the years 2000, 2002,
and 2003. We discuss the implications of this finding for the mechanism that
causes the flaring activity.Comment: 17 pages, 6 figures, 2 table
Grundstate Properties of the 3D Ising Spin Glass
We study zero--temperature properties of the 3d Edwards--Anderson Ising spin
glass on finite lattices up to size . Using multicanonical sampling we
generate large numbers of groundstate configurations in thermal equilibrium.
Finite size scaling with a zero--temperature scaling exponent describes the data well. Alternatively, a descriptions in terms of Parisi
mean field behaviour is still possible. The two scenarios give significantly
different predictions on lattices of size .Comment: LATEX 9pages,figures upon request ,SCRI-9
How large is "large " for Nuclear matter?
We argue that a so far neglected dimensionless scale, the number of neighbors
in a closely packed system, is relevant for the convergence of the large
expansion at high chemical potential. It is only when the number of colors is
large w.r.t. this new scale (\sim \order{10}) that a convergent large
limit is reached. This provides an explanation as to why the large
expansion, qualitatively successful in in vacuum QCD, fails to describe high
baryo-chemical potential systems, such as nuclear matter. It also means that
phenomenological claims about high density matter based on large
extrapolations should be treated with caution.Comment: Proceedings of CPOD2010 conference, in Dubna. Results based on
Phys.Rev.C82, 055202 (2010), http://arxiv.org/abs/1006.247
- …
