4,759 research outputs found
Clinical and biochemical response to neridronate treatment in a patient with osteoporosis-pseudoglioma syndrome (OPPG)
Osteoporosis-pseudoglioma syndrome (OPPG) is a rare autosomal recessive syndrome characterized by juvenile-onset osteoporosis and ocular abnormalities due to a low-density lipoprotein receptor-related protein 5 (LRP5) gene mutation. Treatment with bisphosphonates, particularly with pamidronate and risedronate, has been reported to be of some efficacy in this condition. We report on a patient with OPPG due to an LRP5 gene mutation, who showed an encouraging response after a 36-month period of neridronate therapy. We report a case of a patient treated with bisphosphonates. Bisphosphonates should be administered in OPPG patients as a first-line therapy during early childhood
Charge redistribution in the formation of one-dimensional lithium wires on Cu(001)
We describe the formation of one-dimensional lithium wires on a Cu(001) substrate, providing an atomic-scale description of the onset of metallization in this prototypical adsorption system. A combination of helium atom scattering and density-functional theory reveals pronounced changes in the electronic charge distribution on the formation of the c(5√2×√2)R45° Li/Cu(001) structure, as in-plane bonds are created. Charge donation from Li-substrate bonds is found to facilitate the formation of stable, bonded, and depolarized chains of Li adatoms that coexist with an interleaved phase of independent adatoms. The resultant overlayer has a commensurate charge distribution and lattice modulations but differs fundamentally from structurally similar charge-density wave systems
Association between spondylolisthesis and L5 fracture in patients with osteogenesis imperfecta
To investigate if an association between spondylolisthesis and L5 fracture occurs in patients affected by Osteogenesis Imperfecta (O.I.).
Methods
Anteroposterior and lateral radiograms were performed on the sample (38 O.I. patients, of whom 19 presenting listhesis); on imaging studies spondylolisthesis was quantified according to the Meyerding classification. Genant’s semiquantitative classification was applied on lateral view to evaluate the L5 fractures; skeleton spinal morphometry (MXA) was carried out on the same images to collect quantitative data comparable and superimposable to Genant’s classification. The gathered information were analyzed through statistical tests (O.R., χ 2 test, Fisher’s test, Pearson’s correlation coefficient).
Results
The prevalence of L5 fractures is 73.7 % in O.I. patients with spondylolisthesis and their risk of experiencing such a fracture is twice than O.I. patients without listhesis (OR 2.04). Pearson’s χ 2 test demonstrates an association between L5 spondylolisthesis and L5 fracture, especially with moderate, posterior fractures (p = 0.017) and primarily in patients affected by type IV O.I.
Conclusions
Spondylolisthesis represents a risk factor for the development of more severe and biconcave/posterior type fractures of L5 in patients suffering from O.I., especially in type IV. This fits the hypothesis that the anterior sliding of the soma of L5 alters the dynamics of action of the load forces, localizing them on the central and posterior heights that become the focus of the stress due to movement of flexion–extension and twisting of the spine. As a result, there is greater probability of developing an important subsidence of the central and posterior walls of the soma
Imaging interactions between the immune and cardiovascular systems in vivo by multiphoton microscopy
Several recent studies in immunology have used multiphoton laser-scanning microscopy to visualise the induction of an immune response in real time in vivo. These experiments are illuminating the cellular and molecular interactions involved in the induction, maintenance and regulation of immune responses. Similar approaches are being applied in cardiovascular research where there is an increasing body of
evidence to support a significant role for the adaptive immune system in vascular disease. As such, we have begun to dissect the role of T lymphocytes in atherosclerosis in real time in vivo. Here, we provide step-by-step guides to the various stages involved in visualising the migration of T cells within a lymph node and their infiltration into inflamed tissues such as atherosclerotic arteries. These methods provide an insight into the mechanisms involved in the activation and function of immune cells in vivo
Flux profile scanners for scattered high-energy electrons
The paper describes the design and performance of flux integrating Cherenkov
scanners with air-core reflecting light guides used in a high-energy, high-flux
electron scattering experiment at the Stanford Linear Accelerator Center. The
scanners were highly radiation resistant and provided a good signal to
background ratio leading to very good spatial resolution of the scattered
electron flux profile scans.Comment: 22 pages, 17 figure
Surfaces roughness effects on the transmission of Gaussian beams by anisotropic parallel plates
Influence of the plate surfaces roughness in precise ellipsometry experiments
is studied. The realistic case of a Gaussian laser beam crossing a uniaxial
platelet is considered. Expression for the transmittance is determined using
the first order perturbation theory. In this frame, it is shown that
interference takes place between the specular transmitted beam and the
scattered field. This effect is due to the angular distribution of the Gaussian
beam and is of first order in the roughness over wavelength ratio. As an
application, a numerical simulation of the effects of quartz roughness surfaces
at normal incidence is provided. The interference term is found to be strongly
connected to the random nature of the surface roughness.Comment: 18 pages, Journal of Physics D: Applied Physics, volume 36, issue 21,
pages 2697 - 270
- …
