455 research outputs found
On the physical processes which lie at the bases of time variability of GRBs
The relative-space-time-transformation (RSTT) paradigm and the interpretation
of the burst-structure (IBS) paradigm are applied to probe the origin of the
time variability of GRBs. Again GRB 991216 is used as a prototypical case,
thanks to the precise data from the CGRO, RXTE and Chandra satellites. It is
found that with the exception of the relatively inconspicuous but
scientifically very important signal originating from the initial ``proper
gamma ray burst'' (P-GRB), all the other spikes and time variabilities can be
explained by the interaction of the accelerated-baryonic-matter pulse with
inhomogeneities in the interstellar matter. This can be demonstrated by using
the RSTT paradigm as well as the IBS paradigm, to trace a typical spike
observed in arrival time back to the corresponding one in the laboratory time.
Using these paradigms, the identification of the physical nature of the time
variablity of the GRBs can be made most convincingly. It is made explicit the
dependence of a) the intensities of the afterglow, b) the spikes amplitude and
c) the actual time structure on the Lorentz gamma factor of the
accelerated-baryonic-matter pulse. In principle it is possible to read off from
the spike structure the detailed density contrast of the interstellar medium in
the host galaxy, even at very high redshift.Comment: 11 pages, 5 figure
On the role of galactic magnetic halo in the ultra high energy cosmic rays propagation
The study of propagation of Ultra High Energy Cosmic Rays (UHECR) is a key
step in order to unveil the secret of their origin. Up to now it was considered
only the influence of the galactic and the extragalactic magnetic fields. In
this article we focus our analysis on the influence of the magnetic field of
the galaxies standing between possible UHECR sources and us. Our main approach
is to start from the well known galaxy distribution up to 120 Mpc. We use the
most complete galaxy catalog: the LEDA catalog. Inside a sphere of 120 Mpc
around us, we extract 60130 galaxies with known position. In our simulations we
assign a Halo Dipole magnetic Field (HDF) to each galaxy. The code developed is
able to retro-propagate a charged particle from the arrival points of UHECR
data across our galaxies sample. We present simulations in case of Virgo
cluster and show that there is a non negligible deviation in the case of
protons of eV, even if the value is conservative. Then
special attention is devoted to the AGASA triplet where we find that NGC3998
and NGC3992 could be possible candidates as sources.Comment: Version accepted from ApJ, 5 figure
The EMBH model in GRB 991216 and GRB 980425
This is a summary of the two talks presented at the Rome GRB meeting by C.L.
Bianco and R. Ruffini. It is shown that by respecting the Relative Space-Time
Transformation (RSTT) paradigm and the Interpretation of the Burst Structure
(IBS) paradigm, important inferences are possible: a) in the new physics
occurring in the energy sources of GRBs, b) on the structure of the bursts and
c) on the composition of the interstellar matter surrounding the source.Comment: 8 pages, 3 figures, in the Proceedings of the "Third Rome Workshop on
Gamma-Ray Bursts in the Afterglow Era", 17-20 September 2002, M. Feroci, F.
Frontera, N. Masetti, L. Piro (editors
Antideuterons as a Signature of Supersymmetric Dark Matter
Once the energy spectrum of the secondary component is well understood,
measurements of the antiproton cosmic-ray flux at the Earth will be a powerful
way to indirectly probe for the existence of supersymmetric relics in the
galactic halo. Unfortunately, it is still spoilt by considerable theoretical
uncertainties. As shown in this work, searches for low-energy antideuterons
appear in the mean time as a plausible alternative, worth being explored. Above
a few GeV/n, a dozen spallation antideuterons should be collected by the future
AMS experiment on board ISSA. For energies less than about 3 GeV/n, the
antideuteron spallation component becomes negligible and may be supplanted by a
potential supersymmetric signal. If a few low-energy antideuterons are
discovered, this should be seriously taken as a clue for the existence of
massive neutralinos in the Milky Way.Comment: 16 pages, 9 figure
GRB 050315: A step toward the uniqueness of the overall GRB structure
Using the Swift data of GRB 050315, we progress on the uniqueness of our theoretically predicted Gamma-Ray Burst (GRB) structure as composed by a proper-GRB (P-GRB), emitted at the transparency of an electron-positron plasma with suitable baryon loading, and an afterglow comprising the so called "prompt emission" as due to external shocks. Thanks to the Swift observations, the P-GRB is identified and for the first time we can theoretically fit detailed light curves for selected energy bands on a continuous time scale ranging over 10^6 seconds. The theoretically predicted instantaneous spectral distribution over the entire afterglow is presented, confirming a clear hard-to-soft behavior encompassing, continuously, the "prompt emission" all the way to the latest phases of the afterglow
A model for A=3 antinuclei production in proton-nucleus collisions
A simple coalescence model based on the same diagrammatic approach of
antimatter production in hadronic collisions as used previously for
antideuterons is used here for the hadroproduction of mass 3 antinuclei. It is
shown that the model is able to reproduce the existing experimental data on
Tbar and 3hebar production without any additional parameter.Comment: 7 figures. submitted to Eur. Phys. J.
Positron Propagation and Fluxes from Neutralino Annihilation in the Halo
Supersymmetric neutralinos are one of the most promising candidates for the
dark matter in the Universe. If they exist, they should make up some fraction
of the Milky Way halo. We investigate the fluxes of positrons expected at the
Earth from neutralino annihilation in the halo. Positron propagation is treated
in a diffusion model including energy loss. The positron source function
includes contributions from both continuum and monochromatic positrons. We find
that, for a "canonical" halo model and propagation parameters, the fluxes are
generally too low to be visible. Given the large uncertainties in both
propagation and halo structure, it is however possible to obtain observable
fluxes. We also investigate the shapes of the positron spectra, including fits
to a feature indicated by the results of the HEAT experiment.Comment: 16 pages, 19 figures, uses revte
On the structures in the afterglow peak emission of gamma ray bursts
Using GRB 991216 as a prototype, it is shown that the intensity substructures observed in what is generally called the "prompt emission" in gamma ray bursts (GRBs) do originate in the collision between the accelerated baryonic matter (ABM) pulse with inhomogeneities in the interstellar medium (ISM). The initial phase of such process occurs at a Lorentz factor . The crossing of ISM inhomogeneities of sizes cm occurs in a detector arrival time interval of s implying an apparent superluminal behavior of . The long lasting debate between the validity of the external shock model vs. the internal shock model for GRBs is solved in favor of the first
- …
