31 research outputs found
Nonlinear Low-to-High-Frequency Energy Cascades in Diatomic Granular Crystals
We study wave propagation in strongly nonlinear one-dimensional diatomic granular crystals under an impact load. Depending on the mass ratio of the “light” to “heavy” beads, this system exhibits rich wave dynamics from highly localized traveling waves to highly dispersive waves featuring strong attenuation. We demonstrate experimentally the nonlinear resonant and antiresonant interactions of particles, and we verify that the nonlinear resonance results in strong wave attenuation, leading to highly efficient nonlinear energy cascading without relying on material damping. In this process, mechanical energy is transferred from low to high frequencies, while propagating waves emerge in both ordered and chaotic waveforms via a distinctive spatial cascading. This energy transfer mechanism from lower to higher frequencies and wave numbers is of particular significance toward the design of novel nonlinear acoustic metamaterials with inherently passive energy redistribution properties
Influence of fly ash blending on hydration and physical behavior of Belite-Alite-Ye'elimite cements
A cement powder, composed of belite, alite and ye’elimite, was blended with 0, 15 and 30 wt% of fly ash and the resulting lended cements were further characterized. During hydration, the presence of fly ash caused the partial inhibition of both AFt degradation and belite reactivity, even after 180 days. The compressive strength of the corresponding mortars increased by increasing the fly ash content (68, 73 and 82 MPa for mortars with 0, 15 and 30 wt% of fly ash, respectively, at 180 curing days), mainly due to the diminishing porosity and pore size values. Although pozzolanic reaction has not been directly proved there are indirect evidences.This work is part of the Ph.D. of D. Londono-Zuluaga funded by Beca Colciencias 646—Doctorado en el exterior and Enlaza Mundos 2013 program grant. Cement and Building materials group (CEMATCO) from National University of Colombia is acknowledged for providing the calorimetric measurements. Funding from Spanish MINECO BIA2017-82391-R and I3 (IEDI-2016-0079) grants, co-funded by FEDER, are acknowledged
Nonlinearity and Topology
The interplay of nonlinearity and topology results in many novel and emergent
properties across a number of physical systems such as chiral magnets, nematic
liquid crystals, Bose-Einstein condensates, photonics, high energy physics,
etc. It also results in a wide variety of topological defects such as solitons,
vortices, skyrmions, merons, hopfions, monopoles to name just a few.
Interaction among and collision of these nontrivial defects itself is a topic
of great interest. Curvature and underlying geometry also affect the shape,
interaction and behavior of these defects. Such properties can be studied using
techniques such as, e.g. the Bogomolnyi decomposition. Some applications of
this interplay, e.g. in nonreciprocal photonics as well as topological
materials such as Dirac and Weyl semimetals, are also elucidated
Epilepsy Currents
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) assemblies of polyanionic chondroitin sulfate proteoglycans, hyaluronan, and tenascins that primarily wrap around GABAergic parvalbumin (PV) interneurons. During development, PNN formation terminates the critical period of neuroplasticity, a process that can be reversed by experimental disruption of PNNs. Perineuronal nets also regulate the intrinsic properties of the enclosed PV neurons thereby maintaining their inhibitory activity. Recent studies have implicated PNNs in central nervous system diseases as well as PV neuron dysfunction; consequently, they have further been associated with altered inhibition, particularly in the genesis of epilepsy. A wide range of seizure presentations in human and rodent models exhibit ECM remodeling with PNN disruption due to elevated protease activity. Inhibition of PNN proteolysis reduces seizure activity suggesting that PNN degrading enzymes may be potential novel therapeutic targets.NIHUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [1R01NS036692-01A1, 1R01CA227149-01A1]Published versionThe author(s) received no financial support for the research, authorship, and/or publication of this article: This work was supported by NIH Grants 1R01NS036692-01A1 and 1R01CA227149-01A1
Perineuronal Net Dynamics in the Pathophysiology of Epilepsy
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) assemblies of polyanionic chondroitin sulfate proteoglycans, hyaluronan, and tenascins that primarily wrap around GABAergic parvalbumin (PV) interneurons. During development, PNN formation terminates the critical period of neuroplasticity, a process that can be reversed by experimental disruption of PNNs. Perineuronal nets also regulate the intrinsic properties of the enclosed PV neurons thereby maintaining their inhibitory activity. Recent studies have implicated PNNs in central nervous system diseases as well as PV neuron dysfunction; consequently, they have further been associated with altered inhibition, particularly in the genesis of epilepsy. A wide range of seizure presentations in human and rodent models exhibit ECM remodeling with PNN disruption due to elevated protease activity. Inhibition of PNN proteolysis reduces seizure activity suggesting that PNN degrading enzymes may be potential novel therapeutic targets. </jats:p
Ion Distribution at Steel/Concrete Interface in Steel Reinforced CSA Concrete by Newly Updated Image Analysis Technique
Effect of curing environment on length changes of alkali-activated slag/cement kiln by-pass dust mixtures
Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy
Brain tumours are associated with epilepsy. Here the authors show, using a mouse model, that the degradation of perineuronal nets around fast spiking interneurons near the tumour contribute to seizures by increasing their membrane capacitance and firing
