131 research outputs found
Data-adaptive harmonic spectra and multilayer Stuart-Landau models
Harmonic decompositions of multivariate time series are considered for which
we adopt an integral operator approach with periodic semigroup kernels.
Spectral decomposition theorems are derived that cover the important cases of
two-time statistics drawn from a mixing invariant measure.
The corresponding eigenvalues can be grouped per Fourier frequency, and are
actually given, at each frequency, as the singular values of a cross-spectral
matrix depending on the data. These eigenvalues obey furthermore a variational
principle that allows us to define naturally a multidimensional power spectrum.
The eigenmodes, as far as they are concerned, exhibit a data-adaptive character
manifested in their phase which allows us in turn to define a multidimensional
phase spectrum.
The resulting data-adaptive harmonic (DAH) modes allow for reducing the
data-driven modeling effort to elemental models stacked per frequency, only
coupled at different frequencies by the same noise realization. In particular,
the DAH decomposition extracts time-dependent coefficients stacked by Fourier
frequency which can be efficiently modeled---provided the decay of temporal
correlations is sufficiently well-resolved---within a class of multilayer
stochastic models (MSMs) tailored here on stochastic Stuart-Landau oscillators.
Applications to the Lorenz 96 model and to a stochastic heat equation driven
by a space-time white noise, are considered. In both cases, the DAH
decomposition allows for an extraction of spatio-temporal modes revealing key
features of the dynamics in the embedded phase space. The multilayer
Stuart-Landau models (MSLMs) are shown to successfully model the typical
patterns of the corresponding time-evolving fields, as well as their statistics
of occurrence.Comment: 26 pages, double columns; 15 figure
Effects of stochastic parametrization on extreme value statistics
Extreme geophysical events are of crucial relevance to our daily life: they threaten human lives and cause property damage. To assess the risk and reduce losses, we need to model and probabilistically predict these events. Parametrizations are computational tools used in the Earth system models, which are aimed at reproducing the impact of unresolved scales on resolved scales. The performance of parametrizations has usually been examined on typical events rather than on extreme events. In this paper, we consider a modified version of the two-level Lorenz’96 model and investigate how two parametrizations of the fast degrees of freedom perform in terms of the representation of extreme events. One parametrization is constructed following Wilks [Q. J. R. Meteorol. Soc. 131, 389–407 (2005)] and is constructed through an empirical fitting procedure; the other parametrization is constructed through the statistical mechanical approach proposed by Wouters and Lucarini [J. Stat. Mech. Theory Exp. 2012, P03003 (2012); J. Stat. Phys. 151, 850–860 (2013)]. The two strategies show different advantages and disadvantages. We discover that the agreement between parametrized models and true model is in general worse when looking at extremes rather than at the bulk of the statistics. The results suggest that stochastic parametrizations should be accurately and specifically tested against their performance on extreme events, as usual optimization procedures might neglect them.
The provision of accurate parametrizations is a task of paramount importance in many scientific areas and specifically in weather and climate modeling. Parametrizations are needed for representing accurately and efficiently the impact of the scales of motions and of the processes that cannot be explicitly represented by the numerical model. Parametrizations are usually constructed in order to optimize the overall performance of the model, thus aiming at an accurate representation of the bulk of the statistics. Nonetheless, numerical models are key to estimating, anticipating, and predicting extreme events. Here, we analyze critically in a simple yet illustrative example the performance of parametrizations in describing extreme events, and we conclude that good performance on typical conditions cannot be in any way extrapolated for rare conditions, which could, nonetheless, be of great practical relevance
DADA: data assimilation for the detection and attribution of weather and climate-related events
A new nudging method for data assimilation, delay‐coordinate nudging, is presented. Delay‐coordinate nudging makes explicit use of present and past observations in the formulation of the forcing driving the model evolution at each time step. Numerical experiments with a low‐order chaotic system show that the new method systematically outperforms standard nudging in different model and observational scenarios, also when using an unoptimized formulation of the delay‐nudging coefficients. A connection between the optimal delay and the dominant Lyapunov exponent of the dynamics is found based on heuristic arguments and is confirmed by the numerical results, providing a guideline for the practical implementation of the algorithm. Delay‐coordinate nudging preserves the easiness of implementation, the intuitive functioning and the reduced computational cost of the standard nudging, making it a potential alternative especially in the field of seasonal‐to‐decadal predictions with large Earth system models that limit the use of more sophisticated data assimilation procedures
The writing on the wall: the concealed communities of the East Yorkshire horselads
This paper examines the graffiti found within late nineteenth and early-twentieth century farm buildings in the Wolds of East Yorkshire. It suggests that the graffiti were created by a group of young men at the bottom of the social hierarchy - the horselads – and was one of the ways in which they constructed a distinctive sense of communal identity, at a particular stage in their lives. Whilst it tells us much about changing agricultural regimes and social structures, it also informs us about experiences and attitudes often hidden from official histories and biographies. In this way, the graffiti are argued to inform our understanding, not only of a concealed community, but also about their hidden histor
Dimension reduction for systems with slow relaxation
We develop reduced, stochastic models for high dimensional, dissipative
dynamical systems that relax very slowly to equilibrium and can encode long
term memory. We present a variety of empirical and first principles approaches
for model reduction, and build a mathematical framework for analyzing the
reduced models. We introduce the notions of universal and asymptotic filters to
characterize `optimal' model reductions for sloppy linear models. We illustrate
our methods by applying them to the practically important problem of modeling
evaporation in oil spills.Comment: 48 Pages, 13 figures. Paper dedicated to the memory of Leo Kadanof
Response formulae for n-point correlations in statistical mechanical systems and application to a problem of coarse graining
Predicting the response of a system to perturbations is a key challenge in mathematical and natural sciences. Under suitable conditions on the nature of the system, of the perturbation, and of the observables of interest, response theories allow to construct operators describing the smooth change of the invariant measure of the system of interest as a function of the small parameter controlling the intensity of the perturbation. In particular, response theories can be developed both for stochastic and chaotic deterministic dynamical systems, where in the latter case stricter conditions imposing some degree of structural stability are required. In this paper we extend previous findings and derive general response formulae describing how n-point correlations are affected by perturbations to the vector flow. We also show how to compute the response of the spectral properties of the system to perturbations. We then apply our results to the seemingly unrelated problem of coarse graining in multiscale systems: we find explicit formulae describing the change in the terms describing parameterisation of the neglected degrees of freedom resulting from applying perturbations to the full system. All the terms envisioned by the Mori-Zwanzig theory - the deterministic, stochastic, and non-Markovian terms - are affected at 1st order in the perturbation. The obtained results provide a more comprehesive understanding of the response of statistical mechanical systems to perturbations and contribute to the goal of constructing accurate and robust parameterisations and are of potential relevance for fields like molecular dynamics, condensed matter, and geophysical fluid dynamics. We envision possible applications of our general results to the study of the response of climate variability to anthropogenic and natural forcing and to the study of the equivalence of thermostatted statistical mechanical systems
Investigating possible ethnicity and sex bias in clinical examiners: an analysis of data from the MRCP(UK) PACES and nPACES examinations
Bias of clinical examiners against some types of candidate, based on characteristics such as sex or ethnicity, would represent a threat to the validity of an examination, since sex or ethnicity are 'construct-irrelevant' characteristics. In this paper we report a novel method for assessing sex and ethnic bias in over 2000 examiners who had taken part in the PACES and nPACES (new PACES) examinations of the MRCP(UK)
Stochastic climate theory and modeling
Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models
Predicting climate change using response theory: global averages and spatial patterns
The provision of accurate methods for predicting the climate response to anthropogenic and natural forcings is a key contemporary scientific challenge. Using a simplified and efficient open-source general circulation model of the atmosphere featuring O(105105) degrees of freedom, we show how it is possible to approach such a problem using nonequilibrium statistical mechanics. Response theory allows one to practically compute the time-dependent measure supported on the pullback attractor of the climate system, whose dynamics is non-autonomous as a result of time-dependent forcings. We propose a simple yet efficient method for predicting—at any lead time and in an ensemble sense—the change in climate properties resulting from increase in the concentration of CO22 using test perturbation model runs. We assess strengths and limitations of the response theory in predicting the changes in the globally averaged values of surface temperature and of the yearly total precipitation, as well as in their spatial patterns. The quality of the predictions obtained for the surface temperature fields is rather good, while in the case of precipitation a good skill is observed only for the global average. We also show how it is possible to define accurately concepts like the inertia of the climate system or to predict when climate change is detectable given a scenario of forcing. Our analysis can be extended for dealing with more complex portfolios of forcings and can be adapted to treat, in principle, any climate observable. Our conclusion is that climate change is indeed a problem that can be effectively seen through a statistical mechanical lens, and that there is great potential for optimizing the current coordinated modelling exercises run for the preparation of the subsequent reports of the Intergovernmental Panel for Climate Change
Response operators for Markov processes in a finite state space: radius of convergence and link to the response theory for Axiom A systems
Using straightforward linear algebra we derive response operators describing the impact of small perturbations to finite state Markov processes. The results can be used for studying empirically constructed—e.g. from observations or through coarse graining of model simulations—finite state approximation of statistical mechanical systems. Recent results concerning the convergence of the statistical properties of finite state Markov approximation of the full asymptotic dynamics on the SRB measure in the limit of finer and finer partitions of the phase space are suggestive of some degree of robustness of the obtained results in the case of Axiom A system. Our findings give closed formulas for the linear and nonlinear response theory at all orders of perturbation and provide matrix expressions that can be directly implemented in any coding language, plus providing bounds on the radius of convergence of the perturbative theory. In particular, we relate the convergence of the response theory to the rate of mixing of the unperturbed system. One can use the formulas derived for finite state Markov processes to recover previous findings obtained on the response of continuous time Axiom A dynamical systems to perturbations, by considering the generator of time evolution for the measure and for the observables. A very basic, low-tech, and computationally cheap analysis of the response of the Lorenz ’63 model to perturbations provides rather encouraging results regarding the possibility of using the approximate representation given by finite state Markov processes to compute the system’s response
- …
