290 research outputs found
Multiple G-It\^{o} integral in the G-expectation space
In this paper, motivated by mathematic finance we introduce the multiple
G-It\^{o} integral in the G-expectation space, then investigate how to
calculate. We get the the relationship between Hermite polynomials and multiple
G-It\^{o} integrals which is a natural extension of the classical result
obtained by It\^{o} in 1951.Comment: 9 page
Yield Curve Shapes and the Asymptotic Short Rate Distribution in Affine One-Factor Models
We consider a model for interest rates, where the short rate is given by a
time-homogenous, one-dimensional affine process in the sense of Duffie,
Filipovic and Schachermayer. We show that in such a model yield curves can only
be normal, inverse or humped (i.e. endowed with a single local maximum). Each
case can be characterized by simple conditions on the present short rate. We
give conditions under which the short rate process will converge to a limit
distribution and describe the limit distribution in terms of its cumulant
generating function. We apply our results to the Vasicek model, the CIR model,
a CIR model with added jumps and a model of Ornstein-Uhlenbeck type
On arbitrages arising from honest times
In the context of a general continuous financial market model, we study
whether the additional information associated with an honest time gives rise to
arbitrage profits. By relying on the theory of progressive enlargement of
filtrations, we explicitly show that no kind of arbitrage profit can ever be
realised strictly before an honest time, while classical arbitrage
opportunities can be realised exactly at an honest time as well as after an
honest time. Moreover, stronger arbitrages of the first kind can only be
obtained by trading as soon as an honest time occurs. We carefully study the
behavior of local martingale deflators and consider no-arbitrage-type
conditions weaker than NFLVR.Comment: 25 pages, revised versio
Continuous Equilibrium in Affine and Information-Based Capital Asset Pricing Models
We consider a class of generalized capital asset pricing models in continuous
time with a finite number of agents and tradable securities. The securities may
not be sufficient to span all sources of uncertainty. If the agents have
exponential utility functions and the individual endowments are spanned by the
securities, an equilibrium exists and the agents' optimal trading strategies
are constant. Affine processes, and the theory of information-based asset
pricing are used to model the endogenous asset price dynamics and the terminal
payoff. The derived semi-explicit pricing formulae are applied to numerically
analyze the impact of the agents' risk aversion on the implied volatility of
simultaneously-traded European-style options.Comment: 24 pages, 4 figure
Recent progress in random metric theory and its applications to conditional risk measures
The purpose of this paper is to give a selective survey on recent progress in
random metric theory and its applications to conditional risk measures. This
paper includes eight sections. Section 1 is a longer introduction, which gives
a brief introduction to random metric theory, risk measures and conditional
risk measures. Section 2 gives the central framework in random metric theory,
topological structures, important examples, the notions of a random conjugate
space and the Hahn-Banach theorems for random linear functionals. Section 3
gives several important representation theorems for random conjugate spaces.
Section 4 gives characterizations for a complete random normed module to be
random reflexive. Section 5 gives hyperplane separation theorems currently
available in random locally convex modules. Section 6 gives the theory of
random duality with respect to the locally convex topology and in
particular a characterization for a locally convex module to be
prebarreled. Section 7 gives some basic results on convex
analysis together with some applications to conditional risk measures. Finally,
Section 8 is devoted to extensions of conditional convex risk measures, which
shows that every representable type of conditional convex risk
measure and every continuous type of convex conditional risk measure
() can be extended to an type
of lower semicontinuous conditional convex risk measure and an
type of continuous
conditional convex risk measure (), respectively.Comment: 37 page
Equivalent and Absolutely Continuous Measure Changes for Jump-Diffusion Processes
We provide explicit sufficient conditions for absolute continuity and equivalence between the distributions of two jump-diffusion processes that can explode and be killed by a potential
Market price of risk specifications for affine models: Theory and evidence
We extend the standard specification of the market price of risk for affine yield models, and apply it to U.S. Treasury data. Our specification often provides better fit, sometimes with very high statistical significance. The improved fit comes from the time-series rather than cross-sectional features of the yield curve. We derive conditions under which our specification does not admit arbitrage opportunities. The extension has extremely strong statistical significance for affine yield models with multiple square-root type variables. Although we focus on affine yield models, our specification can be used with other asset pricing models as well
Replication of Wiener-Transformable Stochastic Processes with Application to Financial Markets with Memory
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 271)Daphne Jackson fellowship funded by EPSRC; Australian Research Council (project number DP150102758); ToppForsk project nr. 274410 of the Research Council of Norway with title STORM: Stochastics for Time-Space Risk Models
- …
