1,200 research outputs found

    Experimental observation of nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon

    Full text link
    Owing to its two dimensional electronic structure, graphene exhibits many unique properties. One of them is a wave vector and temperature dependent plasmon in the infrared range. Theory predicts that due to these plasmons, graphene can be used as a universal material to enhance nanoscale radiative heat exchange for any dielectric substrate. Here we report on radiative heat transfer experiments between SiC and a SiO2 sphere which have non matching phonon polariton frequencies, and thus only weakly exchange heat in near field. We observed that the heat flux contribution of graphene epitaxially grown on SiC dominates at short distances. The influence of plasmons on radiative heat transfer is further supported with measurements for doped silicon. These results highlight graphenes strong potential in photonic nearfield and energy conversion devices.Comment: 4 pages, 3 figure

    Plant pathogenic bacteria

    Get PDF

    Experimental Investigation into the Radar Anomalies on the Surface of Venus

    Get PDF
    Radar mapping of thc surface of Venus shows areas of high reflectivity (low emissivity) in the Venusian highlands at altitudes between 2.5-4.75 kilometers. The origin of the radar anomalies found in the Venusian highlands remains unclear. Most explanations of the potential causes for these radar anomalies come from theoretical work. Previous studies suggest increased surface roughness or materials with higher dielectric constants as well as surface atmospheric interactions. Several possible candidates of high-dielectric materials are tellurium) ferroelectric materials, and lead or bismuth sulfides. While previous studies have been influential in determining possible sources for the Venus anomalies, only a very few hypotheses have been verified via experimentation. This work intends to experimentally constrain the source of the radar anomalies on Venus. This study proposes to investigate four possible materials that could potentially cause the high reflectivities on the surface of Venus and tests their behavior under simulated Venusian conditions

    Temperature measurements on ES steel sheets subjected to perforation by hemispherical projectiles

    Get PDF
    In this paper is reported a study on the behaviour of ES mild steel sheets subjected to perforation by hemispherical projectiles. Experiments have been conducted using a pneumatic cannon within the range of impact velocities 5m/s<=V0<=60m/s. The experimental setup allowed evaluating initial velocity, failure mode and post-mortem deflection of the plates. The tests have been recorded using high speed infrared camera. It made possible to obtain temperature contours of the specimen during impact. Thus, special attention is focussed on the thermal softening of the material which is responsible for instabilities and failure. Assuming adiabatic conditions of deformation, the increase of temperature may be related to the plastic deformation. The critical strain leading to target-failure is evaluated coupling temperature measurements with numerical simulations and with analytical predictions obtained by means of the Rusinek-Klepaczko constitutive relation [Rusinek, A., Klepaczko, J.R. Shear testing of sheet steel at wide range of strain rates and a constitutive relation with strain rate and temperature dependence of the flow stress. Int J Plasticity. 2001; 17, 87-115]. It has been estimated that the process of localization of plastic deformation which leads to target-failure involves local values close to for the boundary value problem approached. Subsequently, this failure strain level has been applied to simulate the perforation process and the numerical results obtained show satisfactory agreement with the experiments in terms of ballistic limit, temperature increase and failure mode of the target.The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG08 UC3M/MAT 4464) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2008 06408)Publicad

    First-principles study of iron oxyfluorides and lithiation of FeOF

    Get PDF
    First-principles studies of iron oxyfluorides in the FeF[subscript 2] rutile framework (FeO[subscript x]F[subscript 2−x], 0≤x≤1) are performed using density functional theory (DFT) in the general gradient approximation (GGA) with a Hubbard U correction. Studies of O/F orderings reveal FeOF to be particularly stable compared to other FeO[subscript x]F[subscript 2−x] (x≠1) structures, where FeF[subscript 2]-FeOF mixing is not energetically favored. The band gap of FeF[subscript 2] is found to decrease as oxygen is substituted into its structure. The GGA + U electronic structure evolves from that of a Mott-Hubbard insulator (x=0) to a charge transfer semiconductor (x=1). Lithiation studies reveal that lithiation sites offering mixed O/F environments are the most stable. An insertion voltage plateau up to Li[subscript 0.5]FeOF on lithiation is found, in agreement with recent Li-ion battery experiments. The energetics of further lithiation with respect to conversion scenarios are discussed.United States. Dept. of Energy. Office of Basic Energy Sciences (Northeastern Center for Chemical Energy Storage Award DE-SC0001294

    New high level application software for the control of the SPS-LEP beam transfer lines

    Get PDF
    New high level application software is being developed for the control of the SPS and LEP Transfer Lines. This paper briefly describes the model for the operation of these Transfer Lines, which is largely based on previous experience gained during the development and upgrades of the SPS and LEP control systems. The software system is then presented, followed by a description of the high level applications for the control room operators. Tools and methods used for the design and implementation of the system are mentioned

    Giant slip lengths of a simple fluid at vibrating solid interfaces

    Full text link
    It has been shown recently [PRL 102, 254503 (2009)] that in the plane-plane configuration a mechanical resonator vibrating close to a rigid wall in a simple fluid can be overdamped to a frozen regime. Here, by solving analytically the Navier Stokes equations with partial slip boundary conditions at the solid fluid interface, we develop a theoretical approach justifying and extending these earlier findings. We show in particular that in the perfect slip regime the above mentioned results are, in the plane-plane configuration, very general and robust with respect to lever geometry considerations. We compare the results with those obtained previously for the sphere moving perpendicularly and close to a plane in a simple fluid and discuss in more details the differences concerning the dependence of the friction forces with the gap distance separating the moving object (i.e., plane or sphere) from the fixed plane. Finally, we show that the submicron fluidic effect reported in the reference above, and discussed further in the present work, can have dramatic implications in the design of nano-electromechanical systems (NEMS).Comment: submitted to PRE (see also PRL 102, 254503 (2009)

    Analytical and Numerical Demonstration of How the Drude Dispersive Model Satisfies Nernst's Theorem for the Casimir Entropy

    Full text link
    In view of the current discussion on the subject, an effort is made to show very accurately both analytically and numerically how the Drude dispersive model, assuming the relaxation is nonzero at zero temperature (which is the case when impurities are present), gives consistent results for the Casimir free energy at low temperatures. Specifically, we find that the free energy consists essentially of two terms, one leading term proportional to T^2, and a next term proportional to T^{5/2}. Both these terms give rise to zero Casimir entropy as T -> 0, thus in accordance with Nernst's theorem.Comment: 11 pages, 4 figures; minor changes in the discussion. Contribution to the QFEXT07 proceedings; matches version to be published in J. Phys.

    Casimir-Polder force between an atom and a dielectric plate: thermodynamics and experiment

    Full text link
    The low-temperature behavior of the Casimir-Polder free energy and entropy for an atom near a dielectric plate are found on the basis of the Lifshitz theory. The obtained results are shown to be thermodynamically consistent if the dc conductivity of the plate material is disregarded. With inclusion of dc conductivity, both the standard Lifshitz theory (for all dielectrics) and its generalization taking into account screening effects (for a wide range of dielectrics) violate the Nernst heat theorem. The inclusion of the screening effects is also shown to be inconsistent with experimental data of Casimir force measurements. The physical reasons for this inconsistency are elucidated.Comment: 10 pages, 1 figure; improved discussion; to appear in J. Phys. A: Math. Theor. (Fast Track Communications

    Tuning near field radiative heat flux through surface excitations with a metal insulator transition

    Full text link
    The control of heat flow is a formidable challenge due to lack of good thermal insulators. Promising new oppor-tunities for heat flow control were recently theoretically discovered for radiative heat flow in near field, where large heat flow contrasts may be achieved by tuning electronic excitations on surfaces. Here we show experi-mentally that the phase transition of VO2 entails a change of surface polariton states that significantly affects radiative heat transfer in near field. In all cases the Derjaguin approximation correctly predicted radiative heat transfer in near field, but it underestimated the farfield limit. Our results indicate that heat flow contrasts can be realized in near field that can be larger than those obtained in farfield.Comment: 3 figure
    corecore