19,738 research outputs found

    Probing a new strongly interacting sector via composite diboson resonances

    Full text link
    Diphoton resonance was a crucial discovery mode for the 125 GeV SM Higgs boson at the LHC. This mode or the more general diboson modes may also play an important role in probing for new physics beyond the SM. In this paper, we consider the possibility that a diphoton resonance is due to a composite (pseudo)scalar boson, whose constituents are either new hyperquarks Q or scalar hyperquarks tilde{Q} confined by a new hypercolor force at a confinement scale Lambda_h. Assuming the mass m_Q (or m_{tilde Q}) >> Lambda_h, a diphoton resonance could be interpreted as either a Q bar{Q} state eta_Q with J^{PC} = 0^{-+} or a tilde{Q} tilde{Q}^dagger state eta_{tilde Q} with J^{PC}=0^{++}. For the Q bar{Q} scenario, there will be a spin-triplet partner psi_Q which is slightly heavier than eta_Q due to the hyperfine interactions mediated by hypercolor gluon exchange; while for the tilde{Q} tilde{Q}^dagger scenario, the spin-triplet partner chi_{tilde Q} arises from higher radial excitation with nonzero orbital angular momentum. We consider productions and decays of eta_Q, eta_{tilde Q}, psi_Q, and chi_{tilde Q} at the LHC using the NRQCD factorization approach. We discuss how to test these scenarios by using the DY process and the forward dijet azimuthal angular distributions to determine the J^{PC} quantum number of the diphoton resonance. Constraints on the parameter space can be obtained by interpreting some of the small diphoton excesses reported by the LHC as the composite scalar or pseudoscalar of the model. Another important test of the model is the presence of a nearby hypercolor-singlet but color-octet state like the eta^8_Q or eta^8_{tilde Q}, which can also be constrained by dijet or monojet+monophoton data. Both possibilities of a large or small width of the resonance can be accommodated, depending on whether the hyper-glueball states are kinematically allowed in the final state or not.Comment: 27 pages, 8 figures, version published in Phys. Rev.

    Phase analysis of the cosmic microwave background from an incomplete sky coverage

    Full text link
    Phases of the spherical harmonic analysis of full-sky cosmic microwave background (CMB) temperature data contain useful information complementary to the ubiquitous angular power spectrum. In this letter we present a new method of phase analysis on incomplete sky maps. It is based on Fourier phases of equal-latitude pixel rings of the map, which are related to the mean angle of the trigonometric moments from the full-sky phases. They have an advantage for probing regions of interest without tapping polluted Galactic plane area, and can localize non-Gaussian features and departure from statistical isotropy in the CMB.Comment: 5 pages, 3 figures submitted to MNRAS Letters, replaced with minor change

    Spectral Energy Distributions of Passive T Tauri Disks: Inclination

    Get PDF
    We compute spectral energy distributions (SEDs) for passive T Tauri disks viewed at arbitrary inclinations. Semi-analytic models of disks in radiative and hydrostatic equilibrium are employed. Over viewing angles for which the flared disk does not occult the central star, the SED varies negligibly with inclination. For such aspects, the SED shortward of ~80 microns is particularly insensitive to orientation, since short wavelength disk emission is dominated by superheated surface layers which are optically thin. The SED of a nearly edge-on disk is that of a class I source. The outer disk occults inner disk regions, and emission shortward of ~30 microns is dramatically extinguished. Spectral features from dust grains may appear in absorption. However, millimeter wavelength fluxes decrease by at most a factor of 2 from face-on to edge-on orientations. We present illustrative applications of our SED models. The class I source 04108+2803B is considered a T Tauri star hidden from view by an inclined circumstellar disk. Fits to its observed SED yield model-dependent values for the disk mass of ~0.015 solar masses and a disk inclination of ~65 degrees relative to face-on. The class II source GM Aur represents a T Tauri star unobscured by its circumstellar disk. Fitted parameters include a disk mass of \~0.050 solar masses and an inclination of ~60 degrees.Comment: Accepted to ApJ, 20 pages, 7 figures, aaspp4.st

    Top Quark Rare Decays via Loop-Induced FCNC Interactions in Extended Mirror Fermion Model

    Full text link
    Flavor changing neutral current (FCNC) interactions for a top quark tt decays into XqXq with XX represents a neutral gauge or Higgs boson, and qq a up- or charm-quark are highly suppressed in the Standard Model (SM) due to the Glashow-Iliopoulos-Miami mechanism. Whilst current limits on the branching ratios of these processes have been established at the order of 10410^{-4} from the Large Hadron Collider experiments, SM predictions are at least nine orders of magnitude below. In this work, we study some of these FCNC processes in the context of an extended mirror fermion model, originally proposed to implement the electroweak scale seesaw mechanism for non-sterile right-handed neutrinos. We show that one can probe the process tZct \to Zc for a wide range of parameter space with branching ratios varying from 10610^{-6} to 10810^{-8}, comparable with various new physics models including the general two Higgs doublet model with or without flavor violations at tree level, minimal supersymmetric standard model with or without RR-parity, and extra dimension model.Comment: 30 pages, 8 figures, 2 tables and 1 appendix. Version to appear in NP

    Keck Pencil-Beam Survey for Faint Kuiper Belt Objects

    Get PDF
    We present the results of a pencil-beam survey of the Kuiper Belt using the Keck 10-m telescope. A single 0.01 square degree field is imaged 29 times for a total integration time of 4.8 hr. Combining exposures in software allows the detection of Kuiper Belt Objects (KBOs) having visual magnitude V < 27.9. Two new KBOs are discovered. One object having V = 25.5 lies at a probable heliocentric distance d = 33 AU. The second object at V = 27.2 is located at d = 44 AU. Both KBOs have diameters of about 50 km, assuming comet-like albedos of 4%. Data from all surveys are pooled to construct the luminosity function from red magnitude R = 20 to 27. The cumulative number of objects per square degree, N (< R), is fitted to a power law of the form log_(10) N = 0.52 (R - 23.5). Differences between power laws reported in the literature are due mainly to which survey data are incorporated, and not to the method of fitting. The luminosity function is consistent with a power-law size distribution for objects having diameters s = 50 to 500 km; dn ~ s^(-q) ds, where the differential size index q = 3.6 +/- 0.1. The distribution is such that the smallest objects possess most of the surface area, but the largest bodies contain the bulk of the mass. Though our inferred size index nearly matches that derived by Dohnanyi (1969), it is unknown whether catastrophic collisions are responsible for shaping the size distribution. Implications of the absence of detections of classical KBOs beyond 50 AU are discussed.Comment: Accepted to AJ. Final proof-edited version: references added, discussion of G98 revised in sections 4.3 and 5.

    Accretion through the inner hole of transitional disks: What happens to the dust?

    Get PDF
    We study the effect of radiation pressure on the dust in the inner rim of transitional disks with large inner holes. In particular, we evaluate whether radiation pressure can be responsible for keeping the inner holes dust-free, while allowing gas accretion to proceed. This has been proposed in a paper by Chiang and Murray-Clay (2007, Nature Physics 3, p. 604) who explain the formation of these holes as an inside-out evacuation due to X- ray-triggered accretion of the innermost layer of the disk rim outside of the hole. We show that radiation pressure is clearly incapable of stopping dust from flowing into the hole because of dust pile-up and optical depth effects, and also because of viscous mixing. Other mechanisms need to be found to explain the persistence of the opacity hole in the presence of accretion, and we speculate on possible solutions.Comment: 6 pages, 3 figures, Accepted for publication by Astronomy and Astrophysic

    A theoretical study of heterojunction and graded band gap type solar cells

    Get PDF
    The work performed concentrated on including multisun effects, high temperature effects, and electron irradiation effects into the computer analysis program for heterojunction and graded bandgap solar cells. These objectives were accomplished and the program is now available for such calculations
    corecore