1,933 research outputs found
Contribution of Extragalactic Infrared Sources to CMB Foreground Anisotropy
We estimate the level of confusion to Cosmic Microwave Background anisotropy
measurements caused by extragalactic infrared sources. CMB anisotropy
observations at high resolution and high frequencies are especially sensitive
to this foreground. We use data from the COBE satellite to generate a Galactic
emission spectrum covering mm and sub-mm wavelengths. Using this spectrum as a
template, we predict the microwave emission of the 5319 brightest infrared
galaxies seen by IRAS. We simulate skymaps over the relevant range of
frequencies (30-900 GHz) and instrument resolutions (10'-10 degrees Full Width
Half Max). Analysis of the temperature anisotropy of these skymaps shows that a
reasonable observational window is available for CMB anisotropy measurements.Comment: 14 pages (LaTex source), 3 PostScript figures. Final version, to
appear in ApJLetters May 1. Expanded discussion of systematic error
Time-stepping approach for solving upper-bound problems: Application to two-dimensional Rayleigh-Benard convection
An alternative computational procedure for numerically solving a class of variational problems arising from rigorous upper-bound analysis of forced-dissipative infinite-dimensional nonlinear dynamical systems, including the Navier-Stokes and Oberbeck-Boussinesq equations, is analyzed and applied to Rayleigh-Benard convection. A proof that the only steady state to which this numerical algorithm can converge is the required global optimal of the relevant variational problem is given for three canonical flow configurations. In contrast with most other numerical schemes for computing the optimal bounds on transported quantities (e.g., heat or momentum) within the "background field" variational framework, which employ variants of Newton's method and hence require very accurate initial iterates, the new computational method is easy to implement and, crucially, does not require numerical continuation. The algorithm is used to determine the optimal background-method bound on the heat transport enhancement factor, i.e., the Nusselt number (Nu), as a function of the Rayleigh number (Ra), Prandtl number (Pr), and domain aspect ratio L in two-dimensional Rayleigh-Benard convection between stress-free isothermal boundaries (Rayleigh's original 1916 model of convection). The result of the computation is significant because analyses, laboratory experiments, and numerical simulations have suggested a range of exponents alpha and beta in the presumed Nu similar to (PrRa beta)-Ra-alpha scaling relation. The computations clearly show that for Ra <= 10(10) at fixed L = 2 root 2, Nu <= 0.106Pr(0)Ra(5/12), which indicates that molecular transport cannot generally be neglected in the "ultimate" high-Ra regime.NSF DMS-0928098 DMS-1515161 DMS-0927587 PHY-1205219Simons FoundationNSFONRInstitute for Computational Engineering and Sciences (ICES
Variability survey in the CoRoT SRa01 field: Implications of eclipsing binary distribution on cluster formation in NGC 2264
Time-series photometry of the CoRoT field SRa01 was carried out with the
Berlin Exoplanet Search Telescope II (BEST II) in 2008/2009. A total of 1,161
variable stars were detected, of which 241 were previously known and 920 are
newly found. Several new, variable young stellar objects have been discovered.
The study of the spatial distribution of eclipsing binaries revealed the higher
relative frequency of Algols toward the center of the young open cluster NGC
2264. In general Algol frequency obeys an isotropic distribution of their
angular momentum vectors, except inside the cluster, where a specific
orientation of the inclinations is the case. We suggest that we see the orbital
plane of the binaries almost edge-on.Comment: 18 pages, 8 figures, accepted for publication in Ap
On Semiclassical Limits of String States
We explore the relation between classical and quantum states in both open and
closed (super)strings discussing the relevance of coherent states as a
semiclassical approximation. For the closed string sector a gauge-fixing of the
residual world-sheet rigid translation symmetry of the light-cone gauge is
needed for the construction to be possible. The circular target-space loop
example is worked out explicitly.Comment: 12 page
The Berlin Exoplanet Search Telescope II. Catalog of Variable Stars. I. Characterization of Three Southern Target Fields
A photometric survey of three Southern target fields with BEST II yielded the
detection of 2,406 previously unknown variable stars and an additional 617
stars with suspected variability. This study presents a catalog including their
coordinates, magnitudes, light curves, ephemerides, amplitudes, and type of
variability. In addition, the variability of 17 known objects is confirmed,
thus validating the results. The catalog contains a number of known and new
variables that are of interest for further astrophysical investigations, in
order to, e.g., search for additional bodies in eclipsing binary systems, or to
test stellar interior models.
Altogether, 209,070 stars were monitored with BEST II during a total of 128
nights in 2009/2010. The overall variability fraction of 1.2-1.5% in these
target fields is well comparable to similar ground-based photometric surveys.
Within the main magnitude range of , we identify
0.67(3)% of all stars to be eclipsing binaries, which indicates a completeness
of about one third for this particular type in comparison to space surveys.Comment: accepted to A
Multi-wavelength observations of IGR J17544-2619 from quiescence to outburst
In this paper we report on a long multi-wavelength observational campaign of
the supergiant fast X-ray transient prototype IGR J17544-2619. A 150 ks-long
observation was carried out simultaneously with XMM-Newton and NuSTAR, catching
the source in an initial faint X-ray state and then undergoing a bright X-ray
outburst lasting about 7 ks. We studied the spectral variability during
outburst and quiescence by using a thermal and bulk Comptonization model that
is typically adopted to describe the X-ray spectral energy distribution of
young pulsars in high mass X-ray binaries. Although the statistics of the
collected X-ray data were relatively high we could neither confirm the presence
of a cyclotron line in the broad-band spectrum of the source (0.5-40 keV), nor
detect any of the previously reported tentative detection of the source spin
period. The monitoring carried out with Swift/XRT during the same orbit of the
system observed by XMM-Newton and NuSTAR revealed that the source remained in a
low emission state for most of the time, in agreement with the known property
of all supergiant fast X-ray transients being significantly sub-luminous
compared to other supergiant X-ray binaries. Optical and infrared observations
were carried out for a total of a few thousands of seconds during the
quiescence state of the source detected by XMM-Newton and NuSTAR. The measured
optical and infrared magnitudes were slightly lower than previous values
reported in the literature, but compatible with the known micro-variability of
supergiant stars. UV observations obtained with the UVOT telescope on-board
Swift did not reveal significant changes in the magnitude of the source in this
energy domain compared to previously reported values.Comment: Accepted for publication on A&A. V2: few typos correcte
Monitoramento da eficiência de remoção de nitrogênio no tratamento.
Projeto/Plano de Ação: 04.10.00.011
HD 152246 - a new high-mass triple system and its basic properties
Analyses of multi-epoch, high-resolution (R ~ 50.000) optical spectra of the
O-type star HD 152246 (O9 IV according to the most recent classification),
complemented by a limited number of earlier published radial velocities, led to
the finding that the object is a hierarchical triple system, where a close
inner pair (Ba-Bb) with a slightly eccentric orbit (e = 0.11) and a period of
6.0049 days revolves in a 470-day highly eccentric orbit (e = 0.865) with
another massive and brighter component A. The mass ratio of the inner system
must be low since we were unable to find any traces of the secondary spectrum.
The mass ratio A/(Ba+Bb) is 0.89. The outer system has recently been resolved
using long-baseline interferometry on three occasions. The interferometry
confirms the spectroscopic results and specifies elements of the system. Our
orbital solutions, including the combined radial-velocity and interferometric
solution indicate an orbital inclination of the outer orbit of 112{\deg} and
stellar masses of 20.4 and 22.8 solar masses. We also disentangled the spectra
of components A and Ba and compare them to synthetic spectra from two
independent programmes, TLUSTY and FASTWIND. In either case, the fit was not
satisfactory and we postpone a better determination of the system properties
for a future study, after obtaining observations during the periastron passage
of the outer orbit (the nearest chance being March 2015). For the moment, we
can only conclude that component A is an O9 IV star with v*sin(i) = 210 +\- 10
km/s and effective temperature of 33000 +\- 500 K, while component Ba is an O9
V object with v*sin(i) = 65 +/- 3 km/s and T_eff = 33600 +\- 600 K.Comment: 9 pages, 6 figures, accepted for publication in Astronomy and
Astrophysic
- …
