1,153 research outputs found
Dynamics of locally coupled agents with next nearest neighbor interaction
We consider large but finite systems of identical agents on the line with up
to next nearest neighbor asymmetric coupling. Each agent is modelled by a
linear second order differential equation, linearly coupled to up to four of
its neighbors. The only restriction we impose is that the equations are
decentralized. In this generality we give the conditions for stability of these
systems. For stable systems, we find the response to a change of course by the
leader. This response is at least linear in the size of the flock. Depending on
the system parameters, two types of solutions have been found: damped
oscillations and reflectionless waves. The latter is a novel result and a
feature of systems with at least next nearest neighbor interactions. Analytical
predictions are tested in numerical simulations
The radiation problem from a vertical short dipole antenna above flat and lossy ground. Novel formulation in the spectral domain with closed form analytical solution in the high frequency regime
In this paper we consider the problem of radiation from a vertical short
Hertzian dipole above flat lossy ground, which represents the well known in the
literature Sommerfeld radiation problem. The problem is formulated in a novel
spectral domain approach, and by inverse three dimensional Fourier
transformation the expressions for the received electric and magnetic field in
the physical space are derived as one dimensional integrals over the radial
component of wavevector, in cylindrical coordinates. Subsequent use of the
Stationary Phase Method in the high frequency regime yields closed form
analytical solutions for the received EM field vectors, which coincide with the
corresponding reflected EM field originating from the image point. In this way,
we conclude that the so called in the literature space wave, i.e. line of sight
plus reflected EM field, represents the total solution of the Sommerfeld
problem in the high frequency regime, in which case the surface wave can be
ignored. Finally, numerical results in the high frequency regime are presented
in this paper, in comparison with corresponding numerical results based on
Norton solution of the problem, i.e. space and surface waves
Your Proof Fails? Testing Helps to Find the Reason
Applying deductive verification to formally prove that a program respects its
formal specification is a very complex and time-consuming task due in
particular to the lack of feedback in case of proof failures. Along with a
non-compliance between the code and its specification (due to an error in at
least one of them), possible reasons of a proof failure include a missing or
too weak specification for a called function or a loop, and lack of time or
simply incapacity of the prover to finish a particular proof. This work
proposes a new methodology where test generation helps to identify the reason
of a proof failure and to exhibit a counter-example clearly illustrating the
issue. We describe how to transform an annotated C program into C code suitable
for testing and illustrate the benefits of the method on comprehensive
examples. The method has been implemented in STADY, a plugin of the software
analysis platform FRAMA-C. Initial experiments show that detecting
non-compliances and contract weaknesses allows to precisely diagnose most proof
failures.Comment: 11 pages, 10 figure
Testing for Network and Spatial Autocorrelation
Testing for dependence has been a well-established component of spatial
statistical analyses for decades. In particular, several popular test
statistics have desirable properties for testing for the presence of spatial
autocorrelation in continuous variables. In this paper we propose two
contributions to the literature on tests for autocorrelation. First, we propose
a new test for autocorrelation in categorical variables. While some methods
currently exist for assessing spatial autocorrelation in categorical variables,
the most popular method is unwieldy, somewhat ad hoc, and fails to provide
grounds for a single omnibus test. Second, we discuss the importance of testing
for autocorrelation in data sampled from the nodes of a network, motivated by
social network applications. We demonstrate that our proposed statistic for
categorical variables can both be used in the spatial and network setting
A Study of Concurrency Bugs and Advanced Development Support for Actor-based Programs
The actor model is an attractive foundation for developing concurrent
applications because actors are isolated concurrent entities that communicate
through asynchronous messages and do not share state. Thereby, they avoid
concurrency bugs such as data races, but are not immune to concurrency bugs in
general. This study taxonomizes concurrency bugs in actor-based programs
reported in literature. Furthermore, it analyzes the bugs to identify the
patterns causing them as well as their observable behavior. Based on this
taxonomy, we further analyze the literature and find that current approaches to
static analysis and testing focus on communication deadlocks and message
protocol violations. However, they do not provide solutions to identify
livelocks and behavioral deadlocks. The insights obtained in this study can be
used to improve debugging support for actor-based programs with new debugging
techniques to identify the root cause of complex concurrency bugs.Comment: - Submitted for review - Removed section 6 "Research Roadmap for
Debuggers", its content was summarized in the Future Work section - Added
references for section 1, section 3, section 4.3 and section 5.1 - Updated
citation
From Social Data Mining to Forecasting Socio-Economic Crisis
Socio-economic data mining has a great potential in terms of gaining a better
understanding of problems that our economy and society are facing, such as
financial instability, shortages of resources, or conflicts. Without
large-scale data mining, progress in these areas seems hard or impossible.
Therefore, a suitable, distributed data mining infrastructure and research
centers should be built in Europe. It also appears appropriate to build a
network of Crisis Observatories. They can be imagined as laboratories devoted
to the gathering and processing of enormous volumes of data on both natural
systems such as the Earth and its ecosystem, as well as on human
techno-socio-economic systems, so as to gain early warnings of impending
events. Reality mining provides the chance to adapt more quickly and more
accurately to changing situations. Further opportunities arise by individually
customized services, which however should be provided in a privacy-respecting
way. This requires the development of novel ICT (such as a self- organizing
Web), but most likely new legal regulations and suitable institutions as well.
As long as such regulations are lacking on a world-wide scale, it is in the
public interest that scientists explore what can be done with the huge data
available. Big data do have the potential to change or even threaten democratic
societies. The same applies to sudden and large-scale failures of ICT systems.
Therefore, dealing with data must be done with a large degree of responsibility
and care. Self-interests of individuals, companies or institutions have limits,
where the public interest is affected, and public interest is not a sufficient
justification to violate human rights of individuals. Privacy is a high good,
as confidentiality is, and damaging it would have serious side effects for
society.Comment: 65 pages, 1 figure, Visioneer White Paper, see
http://www.visioneer.ethz.c
Eigenvector localization as a tool to study small communities in online social networks
We present and discuss a mathematical procedure for identification of small
"communities" or segments within large bipartite networks. The procedure is
based on spectral analysis of the matrix encoding network structure. The
principal tool here is localization of eigenvectors of the matrix, by means of
which the relevant network segments become visible. We exemplified our approach
by analyzing the data related to product reviewing on Amazon.com. We found
several segments, a kind of hybrid communities of densely interlinked reviewers
and products, which we were able to meaningfully interpret in terms of the type
and thematic categorization of reviewed items. The method provides a
complementary approach to other ways of community detection, typically aiming
at identification of large network modules
IC-Cut: A Compositional Search Strategy for Dynamic Test Generation
Abstract. We present IC-Cut, short for “Interface-Complexity-based Cut”, a new compositional search strategy for systematically testing large programs. IC-Cut dynamically detects function interfaces that are simple enough to be cost-effective for summarization. IC-Cut then hierarchically decomposes the program into units defined by such functions and their sub-functions in the call graph. These units are tested independently, their test results are recorded as low-complexity function summaries, and the summaries are reused when testing higher-level functions in the call graph, thus limiting overall path explosion. When the decomposed units are tested exhaustively, they constitute verified components of the program. IC-Cut is run dynamically and on-the-fly during the search, typically refining cuts as the search advances. We have implemented this algorithm as a new search strategy in the whitebox fuzzer SAGE, and present detailed experimental results ob-tained when fuzzing the ANI Windows image parser. Our results show that IC-Cut alleviates path explosion while preserving or even increasing code coverage and bug finding, compared to the current generational-search strategy used in SAGE.
A dynamic network approach for the study of human phenotypes
The use of networks to integrate different genetic, proteomic, and metabolic
datasets has been proposed as a viable path toward elucidating the origins of
specific diseases. Here we introduce a new phenotypic database summarizing
correlations obtained from the disease history of more than 30 million patients
in a Phenotypic Disease Network (PDN). We present evidence that the structure
of the PDN is relevant to the understanding of illness progression by showing
that (1) patients develop diseases close in the network to those they already
have; (2) the progression of disease along the links of the network is
different for patients of different genders and ethnicities; (3) patients
diagnosed with diseases which are more highly connected in the PDN tend to die
sooner than those affected by less connected diseases; and (4) diseases that
tend to be preceded by others in the PDN tend to be more connected than
diseases that precede other illnesses, and are associated with higher degrees
of mortality. Our findings show that disease progression can be represented and
studied using network methods, offering the potential to enhance our
understanding of the origin and evolution of human diseases. The dataset
introduced here, released concurrently with this publication, represents the
largest relational phenotypic resource publicly available to the research
community.Comment: 28 pages (double space), 6 figure
- …
