149 research outputs found

    Polaronic features in the optical properties of the Holstein-t-J model

    Full text link
    We derive the exact solution for the optical conductivity σ(ω)\sigma(\omega) of one hole in the Holstein-t-J model in the framework of dynamical mean-field theory (DMFT). We investigate the magnetic and phonon features associated with polaron formation as a function of the exchange coupling JJ, of the electron-phonon interaction λ\lambda and of the temperature. Our solution directly relates the features of the optical conductivity to the excitations in the single-particle spectral function, revealing two distinct mechanisms of closing and filling of the optical pseudogap that take place upon varying the microscopic parameters. We show that the optical absorption at the polaron crossover is characterized by a coexistence of a magnon peak at low frequency and a broad polaronic band at higher frequency. An analytical expression for σ(ω)\sigma(\omega) valid in the polaronic regime is presented.Comment: improved version, as submitted to Phys. Rev.

    Isotope effects in the Hubbard-Holstein model within dynamical mean-field theory

    Full text link
    We study the isotope effects arising from the coupling of correlated electrons with dispersionless phonons by considering the Hubbard-Holstein model at half-filling within the dynamical mean-field theory. In particular we calculate the isotope effects on the quasi-particle spectral weight ZZ, the renormalized phonon frequency, and the static charge and spin susceptibilities. In the weakly correlated regime U/t1.5U/t \lesssim 1.5, where UU is the Hubbard repulsion and tt is the bare electron half-bandwidth, the physical properties are qualitatively similar to those characterizing the Holstein model in the absence of Coulomb repulsion, where the bipolaronic binding takes place at large electron-phonon coupling, and it reflects in divergent isotope responses. On the contrary in the strongly correlated regime U/t1.5U/t \gtrsim 1.5, where the bipolaronic metal-insulator transition becomes of first order, the isotope effects are bounded, suggesting that the first order transition is likely driven by an electronic mechanism, rather then by a lattice instability. These results point out how the isotope responses are extremely sensitive to phase boundaries and they may be used to characterize the competition between the electron-phonon coupling and the Hubbard repulsion.Comment: 10 pages, 8 figures. The paper has been already accepted on Phys. Rev.

    The Charge Ordered State from Weak to Strong Coupling

    Full text link
    We apply the Dynamical Mean Field Theory to the problem of charge ordering. In the normal state as well as in the Charge Ordered (CO) state the existence of polarons, i.e. electrons strongly coupled to local lattice deformation, is associated to the qualitative properties of the Lattice Polarization Distribution Function (LPDF). At intermediate and strong coupling a CO state characterized by a certain amount of thermally activated defects arise from the spatial ordering of preexisting randomly distributed polarons. Properties of this particular CO state gives a qualitative understanding of the low frequency behavior of optical conductivity of NiNi perovskites.Comment: 4 pages, 3 figures, to be published in J. of Superconductivity (proceedings Stripes 98

    Pairing and polarization in systems with retarded interactions

    Full text link
    In a system where a boson (e.g, a phonon) of finite frequency ω0\omega_0 is coupled to electrons, two phenomena occur as the coupling is increased: electron pairing and polarization of the boson field. Within a path integral formalism and a Dynamical Mean-Field approach, we introduce {\it ad hoc} distribution function which allow us to pinpoint the two effects. When ω0\omega_0 is smaller than the bandwidth DD, pairing and polarization occur for fairly similar couplings for all considered temperatures. When ω0>D\omega_0 > D, the two phenomena tend to coincide only for Tω0T \gg \omega_0, but are no longer tied for low temperatures so that a state of paired particles without finite polarization is stabilized.Comment: 4 pages, 2 figure

    Polaronic and nonadiabatic phase diagram from anomalous isotope effects

    Get PDF
    Isotope effects (IEs) are powerful tool to probe directly the dependence of many physical properties on the lattice dynamics. In this paper we invenstigate the onset of anomalous IEs in the spinless Holstein model by employing the dynamical mean field theory. We show that the isotope coefficients of the electron effective mass and of the dressed phonon frequency are sizeable also far away from the strong coupling polaronic crossover and mark the importance of nonadiabatic lattice fluctuations in the weak to moderate coupling region. We characterize the polaronic regime by the appearence of huge IEs. We draw a nonadiabatic phase diagram in which we identify a novel crossover, not related to polaronic features, where the IEs attain their largest anomalies.Comment: 5 pages, 4 figure

    Formation and observation of a quasi-two-dimensional dxyd_{xy} electron liquid in epitaxially stabilized Sr2x_{2-x}Lax_{x}TiO4_{4} thin films

    Full text link
    We report the formation and observation of an electron liquid in Sr2x_{2-x}Lax_{x}TiO4_4, the quasi-two-dimensional counterpart of SrTiO3_3, through reactive molecular-beam epitaxy and {\it in situ} angle-resolved photoemission spectroscopy. The lowest lying states are found to be comprised of Ti 3dxyd_{xy} orbitals, analogous to the LaAlO3_3/SrTiO3_3 interface and exhibit unusually broad features characterized by quantized energy levels and a reduced Luttinger volume. Using model calculations, we explain these characteristics through an interplay of disorder and electron-phonon coupling acting co-operatively at similar energy scales, which provides a possible mechanism for explaining the low free carrier concentrations observed at various oxide heterostructures such as the LaAlO3_3/SrTiO3_3 interface

    Current saturation and Coulomb interactions in organic single-crystal transistors

    Full text link
    Electronic transport through rubrene single-crystal field effect transistors (FETs) is investigated experimentally in the high carrier density regime (n ~ 0.1 carrier/molecule). In this regime, we find that the current does not increase linearly with the density of charge carriers, and tends to saturate. At the same time, the activation energy for transport unexpectedly increases with increasing n. We perform a theoretical analysis in terms of a well-defined microscopic model for interacting Frohlich polarons, that quantitatively accounts for our experimental observations. This work is particularly significant for our understanding of electronic transport through organic FETs.Comment: Extended version with 1 additional figure and an appendix explaining the consistency of the theoretical calculatio

    Band-filling effects on electron-phonon properties of normal and superconducting state

    Full text link
    We address the effect of band filling on the effective electron mass mm^* and the superconducting critical temperature TcT_c in a electron-phonon system. We compare the vertex corrected theory with the non-crossing approximation of the Holstein model within a local approximation. We identify two regions of the electron density where mm^* and TcT_c are enhanced or decreased by the inclusion of the vertex diagrams. We show that the crossover between the enhancement at low density and the decrease towards half filling is almost independent of the microscopic electron-phonon parameters. These different behaviors are explained in terms of the net sign of the vertex diagrams which is positive at low densities and negative close to half filling. Predictions of the present theory for doped MgB2_2, which is argued to be in the low density regime, are discussed.Comment: 13 revtex pages, figures eps include

    Dynamical mean-field theory of the small polaron

    Full text link
    A dynamical mean-field theory of the small polaron problem is presented, which becomes exact in the limit of infinite dimensions. The ground state properties and the one-electron spectral function are obtained for a single electron interacting with Einstein phonons by a mapping of the lattice problem onto a polaronic impurity model. The one-electron propagator of the impurity model is calculated through a continued fraction expansion (CFE), both at zero and finite temperature, for any electron-phonon coupling and phonon energy. In contrast to the ground state properties such as the effective polaron mass, which have a smooth behaviour, spectral properties exhibit a sharp qualitative change at low enough phonon frequency: beyond a critical coupling, one energy gap and then more and more open in the density of states at low energy, while the high energy part of the spectrum is broad and can be explained by a strong coupling adiabatic approximation. As a consequence narrow and coherent low-energy subbands coexist with an incoherent featureless structure at high energy. The subbands denote the formation of quasiparticle polaron states. Also, divergencies of the self-energy may occur in the gaps. At finite temperature such effect triggers an important damping and broadening of the polaron subbands. On the other hand, in the large phonon frequency regime such a separation of energy scales does not exist and the spectrum has always a multipeaked structure.Comment: 21 Pages Latex, 19 PostScript figure
    corecore