66 research outputs found
High shock release in ultrafast laser irradiated metals: Scenario for material ejection
We present one-dimensional numerical simulations describing the behavior of
solid matter exposed to subpicosecond near infrared pulsed laser radiation. We
point out to the role of strong isochoric heating as a mechanism for producing
highly non-equilibrium thermodynamic states. In the case of metals, the
conditions of material ejection from the surface are discussed in a
hydrodynamic context, allowing correlation of the thermodynamic features with
ablation mechanisms. A convenient synthetic representation of the thermodynamic
processes is presented, emphasizing different competitive pathways of material
ejection. Based on the study of the relaxation and cooling processes which
constrain the system to follow original thermodynamic paths, we establish that
the metal surface can exhibit several kinds of phase evolution which can result
in phase explosion or fragmentation. An estimation of the amount of material
exceeding the specific energy required for melting is reported for copper and
aluminum and a theoretical value of the limit-size of the recast material after
ultrashort laser irradiation is determined. Ablation by mechanical
fragmentation is also analysed and compared to experimental data for aluminum
subjected to high tensile pressures and ultrafast loading rates. Spallation is
expected to occur at the rear surface of the aluminum foils and a comparison
with simulation results can determine a spall strength value related to high
strain rates
Transient optical response of ultrafast nonequilibrium excited metals: Effects of electron-electron contribution to collisional absorption
Approaching energy coupling in laser-irradiated metals, we point out the role
of electron-electron collision as an efficient control factor for ultrafast
optical absorption. The high degree of laser-induced electron-ion
nonequilibrium drives a complex absorption pattern with consequences on the
transient optical properties. Consequently, high electronic temperatures
determine largely the collision frequency and establish a transition between
absorptive regimes in solid and plasma phases. In particular, taking into
account umklapp electron-electron collisions, we performed hydrodynamic
simulations of the laser-matter interaction to calculate laser energy
deposition during the electron-ion nonequilibrium stage and subsequent matter
transformation phases. We observe strong correlations between optical and
thermodynamic properties according to the experimental situations. A suitable
connection between solid and plasma regimes is chosen in accordance with models
that describe the behavior in extreme, asymptotic regimes. The proposed
approach describes as well situations encountered in pump-probe types of
experiments, where the state of matter is probed after initial excitation.
Comparison with experimental measurements shows simulation results which are
sufficiently accurate to interpret the observed material behavior. A numerical
probe is proposed to analyze the transient optical properties of matter exposed
to ultrashort pulsed laser irradiation at moderate and high intensities.
Various thermodynamic states are assigned to the observed optical variation.
Qualitative indications of the amount of energy coupled in the irradiated
targets are obtained.
Keywords: ultrafast absorption ; umklapp electron-electron collision ;
collisional absorption ; laser-matter interactio
Recommended from our members
Experiments for the Validation of Debris and Shrapnel Calculations
The debris and shrapnel generated by laser targets are important factors in the operation of a large laser facility such as NIF, LMJ, and Orion. Past experience has shown that it is possible for such target debris to render diagnostics inoperable and also to penetrate or damage optical protection (debris) shields. We are developing the tools to allow evaluation of target configurations in order to better mitigate the generation and impact of debris, including development of dedicated modeling codes. In order to validate these predictive simulations, we briefly describe a series of experiments aimed at determining the amount of debris and/or shrapnel produced in controlled situations. We use glass and aerogel to capture generated debris/shrapnel. The experimental targets include hohlraums (halfraums) and thin foils in a variety of geometries. Post-shot analysis includes scanning electron microscopy and x-ray tomography. We show the results of some of these experiments and discuss modeling efforts
X-ray-line self-absorption and electron density determination in a laser-created plasma
One-dimensional magnetohydrodynamics of a cylindrical liner imploded by an azimuthal magnetic field and compressing an axial field
ABSORPTION OF ALUMINUM X-RAY LINES IN A LASER CREATED GOLD PLASMA
La focalisation d'un faisceau laser intense sur une cible adaptée nous a permis de mettre en évidence et de mesurer l'absorption des raies de résonance de l'aluminium par un plasma d'or dans la game de longueur d'onde 5-7 Å.We have studied the absorption of aluminum X-ray lines through a gold plasma by focusing a high intensity laser-beam onto a specific target. Absorption in the wavelength range of 5 to 7 Å has been evidenced and measured for aluminum resonance lines
- …
