106 research outputs found

    Anomalous Chromomagnetic Moments of Quarks and Large Transverse Energy Jets

    Get PDF
    We consider the jet cross sections for gluons coupling to quarks with an anomalous chromomagnetic moment. We then apply this to the deviation and bounds from QCD found in the CDF and D0 Fermilab data, respectively, to find a range of possible values for the anomalous moments. The quadratic and quartic terms in the anomalous moments can fit to the rise of a deviation with transverse energy. Since previous analyses have been done on the top quark total cross section, here we assume the same moment on all quarks except the top and find the range κκ/(2mq)=1.0±0.3|\kappa'| \equiv |\kappa/(2 m_q)| = 1.0\pm 0.3 TeV1^{-1} for the CDF data. Assuming the anomalous moment is present only on a charm or bottom quark which is pair produced results in a range κb,c=3.5±1.0|\kappa'_{b,c}| = 3.5 \pm 1.0 TeV1^{-1}. The magnitudes here are compared with anomalous magnetic moments that could account for RbR_b and found to be in the same general range, as well as not inconsistent with LEP and SLD bounds on ΔΓhad\Delta \Gamma_{\text{had}}.Comment: REVTeX, 11 pages, 2 postscript figure

    Equilibration in Quark Gluon Plasma

    Full text link
    The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and compared with the scattering rate of quarks and gluons within the system. Partonic scattering rates evaluated within the ambit of perturbative Quantum Choromodynamics (pQCD) are found to be smaller than the expansion rate evaluated with ideal equation of state (EoS) for the QGP. This indicate that during the space-time evolution the system remains out of equilibrium. Enhancement of pQCD cross sections and a more realistic EoS keep the partons closer to the equilibrium.Comment: To be published in the Quark Matter 2008 poster proceeding

    Light from Cascading Partons in Relativistic Heavy-Ion Collisions

    Get PDF
    We calculate the production of high energy photons from Compton and annihilation processes as well as fragmentation off quarks in the parton cascade model. The multiple scattering of partons is seen to lead to a substantial production of high energy photons, which rises further when parton multiplication due to final state radiation is included. The photon yield is found to be proportional to the number of collisions among the cascading partons.Comment: revised version: 4 pages, 4 figures, uses REVTEX

    Coloron Phenomenology

    Get PDF
    A flavor-universal extension of the strong interactions was recently proposed in response to the apparent excess of high-ETE_T jets in the inclusive jet spectrum measured at the Tevatron. This paper studies the color octet of massive gauge bosons (`colorons') that is present in the low-energy spectrum of the model's Higgs phase. Constraints from searches for new particles decaying to dijets and from measurements of the weak-interaction ρ\rho parameter imply that the colorons must have masses greater than 870-1000 GeV. The implications of recent Tevatron data and the prospective input from future experiments are also discussed.Comment: 13 pages, 4 embedded Postscript figures, LaTeX, full postscript version also available at http://smyrd.bu.edu/htfigs/htfigs.html rectified confusing phrase at end of sub-section on 'dijets

    A Poincare-Covariant Parton Cascade Model for Ultrarelativistic Heavy-Ion Reactions

    Get PDF
    We present a new cascade-type microscopic simulation of nucleus-nucleus collisions at RHIC energies. The basic elements are partons (quarks and gluons) moving in 8N-dimensional phase space according to Poincare-covariant dynamics. The parton-parton scattering cross sections used in the model are computed within perturbative QCD in the tree-level approximation. The Q^2 dependence of the structure functions is included by an implementation of the DGLAP mechanism suitable for a cascade, so that the number of partons is not static, but varies in space and time as the collision of two nuclei evolves. The resulting parton distributions are presented, and meaningful comparisons with experimental data are discussed.Comment: 30 pages. 11 figures. Submitted to Phys.Rev.

    Additional J/ΨJ/\Psi Suppression from High Density Effects

    Full text link
    At high energies the saturation effects associated to the high parton density should modify the behavior of the observables in proton-nucleus and nucleus-nucleus scattering. In this paper we investigate the saturation effects in the nuclear J/ΨJ/\Psi production and estimate the modifications in the energy dependence of the cross section as well as in the length of the nuclear medium. In particular, we calculate the ratio of J/ΨJ/\Psi to Drell-Yan cross sections and show that it is strongly modified if the high density effects are included. Moreover, our results are compared with the data from the NA50 Collaboration and predictions for the RHIC and LHC kinematic regions are presented. We predict an additional J/ΨJ/\Psi suppression associated to the high density effects.Comment: 13 pages, 5 figures, version to be published in Eur. Phys. J.

    Rapidity Distributions of Dileptons from a Hadronizing Quark-Gluon Plasma

    Get PDF
    It has been predicted that dilepton production may be used as a quark-gluon plasma probe. We calculate the rapidity distributions of thermal dileptons produced by an evolving quark-gluon plasma assuming a longitudinal scaling expansion with initial conditions locally determined from the hadronic rapidity density. These distributions are compared with Drell-Yan production and semileptonic charm decays at invariant mass M=2M = 2, 4, and 6 GeV.Comment: 17 pages (standard LaTeX), 6 figures (available as topdraw files or printed versions upon request), GSI-93-6

    Top Production in Hadron-Hadron Collisions and Anomalous Top-Gluon Couplings

    Get PDF
    We discuss the influence of anomalous tbar-t-G couplings on total and differential tbar-t production cross sections in hadron-hadron collisions. We study in detail the effects of a chromoelectric and a chromomagnetic dipole moment, d' and \mu', of the top quark. In the d'-\mu' plane, we find a whole region where the anomalous couplings give a zero net contribution to the total top production rate. In differential cross sections, the anomalous moments have to be quite sizable to give measurable effects. We estimate the values of d' and \mu' which are allowed by the present Tevatron experimental results on top production. A chromoelectric dipole moment of the top violates CP invariance. We discuss a simple CP-odd observable which allows for a direct search for CP violation in top production.Comment: footnote pg. 4 changed, acknowledgments extende

    Hard diffraction in hadron--hadron interactions and in photoproduction

    Get PDF
    Hard single diffractive processes are studied within the framework of the triple--Pomeron approximation. Using a Pomeron structure function motivated by Regge--theory we obtain parton distribution functions which do not obey momentum sum rule. Based on Regge-- factorization cross sections for hard diffraction are calculated. Furthermore, the model is applied to hard diffractive particle production in photoproduction and in ppˉp\bar{p} interactions.Comment: 13 pages, Latex, 13 uuencoded figure

    Search for anomalous top-gluon couplings at LHC revisited

    Full text link
    Through top-quark pair productions at LHC, we study possible effects of nonstandard top-gluon couplings yielded by SU(3)xSU(2)xU(1) invariant dimension-6 effective operators. We calculate the total cross section and also some distributions for p p -> t tbar X as functions of two anomalous-coupling parameters, i.e., the chromoelectric and chromomagnetic moments of the top, which are constrained by the total cross section sigma(p pbar -> t tbar X) measured at Tevatron. We find that LHC might give us some chances to observe sizable effects induced by those new couplings.Comment: One comment and related two refs. added. Final version (to appear in Eur.Phys.J. C
    corecore