157 research outputs found

    Engineering access to higher education through higher education fairs

    Get PDF
    Text from van Zanten A., Legavre A. “Engineering access to higher education through higher education fairs”, in Goastellec G., Picard F. (ed.) The Roles of Higher Education and Research in the Fabric of Societies, Leuven, Sense Publishers, 2014 (in press). Transition to higher education is a major social process. This transition has been mostly studied by French sociologists of education and higher education from perspectives focusing predominantly on the role of the socio-economic status, academic profiles and different tracks followed by secondary school students (Merle 1996, Duru-Bellat and Kieffer 2008, Convert 2010), and, to a lesser extent, on the types of secondary schools attended (Duru-Bellat and Mingat 1998, Nakhili 2005) and the local higher education provision (Berthet et al. 2010, Orange 2013). Although these structural determinants play a major role in explaining significant regularities, they provide more powerful explanations for individuals representing the extremes of the different variables considered, leaving room for the influence of other major factors for those students in intermediate situations. In addition, even in the case of students occupying extreme positions, structural perspectives better explain the distribution of students between different higher education tracks than they do between institutions and disciplines. In this chapter, we adopt a perspective that we see as complementary to and interacting with the perspective centred on structural determinants by focusing on the role of the devices that mediate the exchanges between students and higher education institutions, and more specifically on one device: higher education fairs. Our purpose in doing so is not only to document how these various devices frame, in ways that remain largely unexplored by researchers, exchanges between providers and consumers of higher education but also to point out – and further explore in future publications – how these devices, and the specific features of fairs, contribute to the reproduction and transformation of educational inequalities in access to higher education (Benninghoff et al. 2012)

    Pt-Sn/C as a possible methanol-tolerant cathode catalyst for DMFC

    Get PDF
    An effective method was developed for preparing highly dispersed nano-sized Pt–Sn/C electrocatalyst synthesised by a modified polyol reduction method. From XRD patterns, the Pt–Sn/C peaks shifted slightly to lower 2θ angles when compared with commercial Pt/C catalyst, suggesting that Sn formed alloy with Pt. Based on HR-TEM images, the Pt–Sn/C nanoparticles showed small particle sizes and well dispersed onto the carbon support with a narrow particle distribution. The methanol oxidation reaction on the as-prepared Pt–Sn/C catalyst appeared at lower currents (+7.08 mA at +480 mV vs. Ag/AgCl) compared to the commercial Pt/C (+8.25 mA at +480 mV vs. Ag/AgCl) suggesting that the Pt–Sn/C catalyst has ‘methanol tolerance capabilities’. Pt–Sn/C HA Slurry pH3 catalysts showed better activity towards the oxygen-reduction reaction (ORR) than commercial Pt/C which could be attributed to smaller particle sizes. In our study, the Pt–Sn/C catalyst appears to be a promising methanol-tolerant catalyst with activity towards the ORR in the DMFC.Web of Scienc

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    Modeling the registration efficiency of thermal neutrons by gadolinium foils

    Get PDF
    In the paper we present the results of mathematical modeling of the registration efficiency of thermal neutrons for the converters made of natural Gd and its 157 isotope plane-parallel foils. In the performed calculations four fixed energies of neutrons with the corresponding wavelengths of 1, 1.8, 3 and 4 A0A^0 are taken into account. We calculate the efficiencies of the converter for electron escapes to frontward and backward hemispheres and their sum, depending on thickness of converting foils. Results of comparison of our calculations with the experimental data are presented.Comment: 19 pages, 8 figure

    Characterization of Fabric-to-Fabric Friction: Application to Medical Compression Bandages

    Get PDF
    Fabric-to-fabric friction is involved in the action mechanism of medical compression devices such as compression bandages or lumbar belts. To better understand the action of such devices, it is essential to characterize, in their use conditions (mainly pressure and stretch), the frictional properties of the fabrics they are composed of. A characterization method of fabric-to-fabric friction was developed. This method was based on the customization of the fourth instrument of the Kawabata Evaluation System, initially designed for fabric roughness and friction characterization. A friction contactor was developed so that the stretch of the fabric and the applied load can vary to replicate the use conditions. This methodology was implemented to measure the friction coefficient of several medical compression bandages. In the ranges of pressure and bandage stretch investigated in the study, bandage-to-bandage friction coefficient showed very little variation. This simple and reliable method, which was tested for commercially available medical compression bandages, could be used for other medical compression fabrics

    Development and performance test of an online blood sampling system for determination of the arterial input function in rats

    Get PDF
    BACKGROUND: For positron emission tomography (PET) kinetic modelling, an accurate determination of the arterial input function is required. In this study, a blood sampling system was developed and tested using different radiotracers in rats. METHODS: The detector consists of pairs of lutetium yttrium oxyorthosilicate (LYSO) detectors, photomultiplier tubes and lead shield assembled within a steel casing working in coincidence mode. Rats were cannulated with microtubes in the femoral artery and vein for arterial blood sampling as well as administration of the PET tracers. Connected PTFE microtubes were centred between the LYSO crystals using a special holder. To enhance sensitivity, three layers with two coils were used. A flexible tube pump was used to ensure a constant blood flow. Performance of the detector was assessed with [(18)F]fludeoxyglucose (FDG), [(18)F]ciprofloxacin, (R)-[(11)C]verapamil, [(11)C]tariquidar, [(11)C]mephobarbital and [(11)C]MC113. Obtained input function curves were compared with manual samples drawn every 5 s during the first 3 min and further on at 5, 10, 20, 30, 40, 50 and 60 min after radiotracer injection. After manual sampling, an arterio/venous shunt was established. Shape and area-under-the-curve (AUC; Bq/μl*h) of the input functions were evaluated. RESULTS: The developed detector system provided an absolute sensitivity of 6.5%. Maximum peak values agreed well between manual samples and the detector with a mean difference of −0.4% ± 7.0% (max 12.0%, min −9.9%). AUC values also exhibited an excellent correlation (R = 0.996) between manual sampling and detector measurements with a mean difference of 9.3% ± 9.7% (max 24.1%, min −3.2%). The system was able to measure peak blood activity concentration levels of 110 to 2,000 Bq/μl which corresponds to injected activities from 5.5 to 100 MBq depending on the used radiotracer, applied volume and weight of the animal. CONCLUSIONS: This study demonstrates that the developed blood sampling system can be used for in vivo small animal PET studies in rats in a reliable way. The usage of the systems enhances the accuracy of the input curve as handling of small blood samples especially with low activity (as for C-11) is prone to measurement errors. Additionally, the radiation dose of the experimenters can be reduced, as it is not required anymore to continuously draw samples where the personal is in close contact to the radioactive animals and blood

    The Physics of the B Factories

    Get PDF

    Thermal neutron detection

    No full text
    corecore