1,599 research outputs found
Effect of high pressure on multiferroic BiFeO3
We report experimental evidence for pressure instabilities in the model
multiferroic BiFeO3 and namely reveal two structural phase transitions around 3
GPa and 10 GPa by using diffraction and far-infrared spectroscopy at a
synchrotron source. The intermediate phase from 3 to 9 GPa crystallizes in a
monoclinic space group, with octahedra tilts and small cation displacements.
When the pressure is further increased the cation displacements (and thus the
polar character) of BiFeO3 is suppressed above 10 GPa. The above 10 GPa
observed non-polar orthorhombic Pnma structure is in agreement with recent
theoretical ab-initio prediction, while the intermediate monoclinic phase was
not predicted theoretically.Comment: new version, accepted for publication in Phys. Rev.
Non-equilibrium Casimir forces: Spheres and sphere-plate
We discuss non-equilibrium extensions of the Casimir force (due to
electromagnetic fluctuations), where the objects as well as the environment are
held at different temperatures. While the formalism we develop is quite
general, we focus on a sphere in front of a plate, as well as two spheres, when
the radius is small compared to separation and thermal wavelengths. In this
limit the forces can be expressed analytically in terms of the lowest order
multipoles, and corroborated with results obtained by diluting parallel plates
of vanishing thickness. Non-equilibrium forces are generally stronger than
their equilibrium counterpart, and may oscillate with separation (at a scale
set by material resonances). For both geometries we obtain stable points of
zero net force, while two spheres may have equal forces in magnitude and
direction resulting in a self-propelling state.Comment: 6 pages, 6 figure
Trace formulae for non-equilibrium Casimir interactions, heat radiation and heat transfer for arbitrary objects
We present a detailed derivation of heat radiation, heat transfer and
(Casimir) interactions for N arbitrary objects in the framework of
fluctuational electrodynamics in thermal non-equilibrium. The results can be
expressed as basis-independent trace formulae in terms of the scattering
operators of the individual objects. We prove that heat radiation of a single
object is positive, and that heat transfer (for two arbitrary passive objects)
is from the hotter to a colder body. The heat transferred is also symmetric,
exactly reversed if the two temperatures are exchanged. Introducing partial
wave-expansions, we transform the results for radiation, transfer and forces
into traces of matrices that can be evaluated in any basis, analogous to the
equilibrium Casimir force. The method is illustrated by (re)deriving the heat
radiation of a plate, a sphere and a cylinder. We analyze the radiation of a
sphere for different materials, emphasizing that a simplification often
employed for metallic nano-spheres is typically invalid. We derive asymptotic
formulae for heat transfer and non-equilibrium interactions for the cases of a
sphere in front a plate and for two spheres, extending previous results. As an
example, we show that a hot nano-sphere can levitate above a plate with the
repulsive non-equilibrium force overcoming gravity -- an effect that is not due
to radiation pressure.Comment: 29 pages, 6 figures (v2: Sentence added in Sec. 1
The Atacama Cosmology Telescope: the stellar content of galaxy clusters selected using the Sunyaev-Zel'dovich effect
We present a first measurement of the stellar mass component of galaxy
clusters selected via the Sunyaev-Zel'dovich (SZ) effect, using 3.6 um and 4.5
um photometry from the Spitzer Space Telescope. Our sample consists of 14
clusters detected by the Atacama Cosmology Telescope (ACT), which span the
redshift range 0.27 < z < 1.07 (median z = 0.50), and have dynamical mass
measurements, accurate to about 30 per cent, with median M500 = 6.9 x 10^{14}
MSun. We measure the 3.6 um and 4.5 um galaxy luminosity functions, finding the
characteristic magnitude (m*) and faint-end slope (alpha) to be similar to
those for IR-selected cluster samples. We perform the first measurements of the
scaling of SZ-observables (Y500 and y0) with both brightest cluster galaxy
(BCG) stellar mass and total cluster stellar mass (M500star). We find a
significant correlation between BCG stellar mass and Y500 (E(z)^{-2/3} DA^2
Y500 ~ M*^{1.2 +/- 0.6}), although we are not able to obtain a strong
constraint on the slope of the relation due to the small sample size.
Additionally, we obtain E(z)^{-2/3} DA^2 Y500 ~ M500star^{1.0 +/- 0.6} for the
scaling with total stellar mass. The mass fraction in stars spans the range
0.006-0.034, with the second ranked cluster in terms of dynamical mass (ACT-CL
J0237-4939) having an unusually low total stellar mass and the lowest stellar
mass fraction. For the five clusters with gas mass measurements available in
the literature, we see no evidence for a shortfall of baryons relative to the
cosmic mean value.Comment: Accepted for publication in MNRAS; 12 pages, 10 figure
The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data
[Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new
discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the
Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial
equator. A subsample of 48 clusters within the 270 square degree region
overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14
Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters,
the sample is studied further through a "Profile Based Amplitude Analysis"
using a single filter at a fixed \theta_500 = 5.9' angular scale. This new
approach takes advantage of the "Universal Pressure Profile" (UPP) to fix the
relationship between the cluster characteristic size (R_500) and the integrated
Compton parameter (Y_500). The UPP scalings are found to be nearly identical to
an adiabatic model, while a model incorporating non-thermal pressure better
matches dynamical mass measurements and masses from the South Pole Telescope. A
high signal to noise ratio subsample of 15 ACT clusters is used to obtain
cosmological constraints. We first confirm that constraints from SZ data are
limited by uncertainty in the scaling relation parameters rather than sample
size or measurement uncertainty. We next add in seven clusters from the ACT
Southern survey, including their dynamical mass measurements based on galaxy
velocity dispersions. In combination with WMAP7 these data simultaneously
constrain the scaling relation and cosmological parameters, yielding \sigma_8 =
0.829 \pm 0.024 and \Omega_m = 0.292 \pm 0.025. The results include
marginalization over a 15% bias in dynamical mass relative to the true halo
mass. In an extension to LCDM that incorporates non-zero neutrino mass density,
we combine our data with WMAP7+BAO+Hubble constant measurements to constrain
\Sigma m_\nu < 0.29 eV (95% C. L.).Comment: 32 pages, 21 figures To appear in J. Cosmology and Astroparticle
Physic
A broad distribution of the alternative oxidase in microsporidian parasites
Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of ironsulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX), a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1) as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosome
- …
