4,566 research outputs found

    First-order sidebands in circuit QED using qubit frequency modulation

    Full text link
    Sideband transitions have been shown to generate controllable interaction between superconducting qubits and microwave resonators. Up to now, these transitions have been implemented with voltage drives on the qubit or the resonator, with the significant disadvantage that such implementations only lead to second-order sideband transitions. Here we propose an approach to achieve first-order sideband transitions by relying on controlled oscillations of the qubit frequency using a flux-bias line. Not only can first-order transitions be significantly faster, but the same technique can be employed to implement other tunable qubit-resonator and qubit-qubit interactions. We discuss in detail how such first-order sideband transitions can be used to implement a high fidelity controlled-NOT operation between two transmons coupled to the same resonator.Comment: 15 pages, 5 figure

    Magnetically-controlled velocity selection in a cold atom sample using stimulated Raman transitions

    Full text link
    We observe velocity-selective two-photon resonances in a cold atom cloud in the presence of a magnetic field. We use these resonances to demonstrate a simple magnetometer with sub-mG resolution. The technique is particularly useful for zeroing the magnetic field and does not require any additional laser frequencies than are already used for standard magneto-optical traps. We verify the effects using Faraday rotation spectroscopy.Comment: 5 pages, 6 figure

    Shock waves in ultracold Fermi (Tonks) gases

    Full text link
    It is shown that a broad density perturbation in a Fermi (Tonks) cloud takes a shock wave form in the course of time evolution. A very accurate analytical description of shock formation is provided. A simple experimental setup for the observation of shocks is discussed.Comment: approx. 4 pages&figures, minor corrections^2, to be published as a Letter in Journal of Physics

    Robust Chauvenet Outlier Rejection

    Full text link
    Sigma clipping is commonly used in astronomy for outlier rejection, but the number of standard deviations beyond which one should clip data from a sample ultimately depends on the size of the sample. Chauvenet rejection is one of the oldest, and simplest, ways to account for this, but, like sigma clipping, depends on the sample's mean and standard deviation, neither of which are robust quantities: Both are easily contaminated by the very outliers they are being used to reject. Many, more robust measures of central tendency, and of sample deviation, exist, but each has a tradeoff with precision. Here, we demonstrate that outlier rejection can be both very robust and very precise if decreasingly robust but increasingly precise techniques are applied in sequence. To this end, we present a variation on Chauvenet rejection that we call "robust" Chauvenet rejection (RCR), which uses three decreasingly robust/increasingly precise measures of central tendency, and four decreasingly robust/increasingly precise measures of sample deviation. We show this sequential approach to be very effective for a wide variety of contaminant types, even when a significant -- even dominant -- fraction of the sample is contaminated, and especially when the contaminants are strong. Furthermore, we have developed a bulk-rejection variant, to significantly decrease computing times, and RCR can be applied both to weighted data, and when fitting parameterized models to data. We present aperture photometry in a contaminated, crowded field as an example. RCR may be used by anyone at https://skynet.unc.edu/rcr, and source code is available there as well.Comment: 62 pages, 48 figures, 7 tables, accepted for publication in ApJ

    Topological vortex formation in a Bose-Einstein condensate

    Full text link
    Vortices were imprinted in a Bose-Einstein condensate using topological phases. Sodium condensates held in a Ioffe-Pritchard magnetic trap were transformed from a non-rotating state to one with quantized circulation by adiabatically inverting the magnetic bias field along the trap axis. Using surface wave spectroscopy, the axial angular momentum per particle of the vortex states was found to be consistent with 22\hbar or 44\hbar, depending on the hyperfine state of the condensate.Comment: 5 pages, 3 figure

    Electromagnetically induced transparency in superconducting quantum circuits : Effects of decoherence, tunneling and multi-level cross-talk

    Full text link
    We explore theoretically electromagnetically-induced transparency (EIT) in a superconducting quantum circuit (SQC). The system is a persistent-current flux qubit biased in a Λ\Lambda configuration. Previously [Phys. Rev. Lett. 93, 087003 (2004)], we showed that an ideally-prepared EIT system provides a sensitive means to probe decoherence. Here, we extend this work by exploring the effects of imperfect dark-state preparation and specific decoherence mechanisms (population loss via tunneling, pure dephasing, and incoherent population exchange). We find an initial, rapid population loss from the Λ\Lambda system for an imperfectly prepared dark state. This is followed by a slower population loss due to both the detuning of the microwave fields from the EIT resonance and the existing decoherence mechanisms. We find analytic expressions for the slow loss rate, with coefficients that depend on the particular decoherence mechanisms, thereby providing a means to probe, identify, and quantify various sources of decoherence with EIT. We go beyond the rotating wave approximation to consider how strong microwave fields can induce additional off-resonant transitions in the SQC, and we show how these effects can be mitigated by compensation of the resulting AC Stark shifts

    Types and correlates of school non-attendance in students with autism spectrum disorders

    Get PDF
    School non-attendance in autism spectrum disorders (ASD) has received very little attention to date. The study aimed to provide a comprehensive description of school non-attendance in students with ASD. Through an online survey, parents of 486 children (mean age 11 years) reported on school attendance over one month, and reasons for instances of non-attendance. On average, students missed five days of school of a possible 23 days. Persistent non-attendance (absent on 10%+ of available sessions) occurred among 43% of students. School non-attendance was associated with child older age, not living in a two-parent household, parental unemployment and, especially, attending a mainstream school. School refusal accounted for 43% of non-attendance. School exclusion and school withdrawal each accounted for 9% of absences. Truancy was almost non-existent. Non-problematic absenteeism (mostly related to medical appointments and illness) accounted for 32% of absences. Non-problematic absenteeism was more likely among those with intellectual disability, school refusal was more likely among older students, and school exclusion was more likely among students from single-parent, unemployed, and well educated households. Findings suggest school non-attendance in ASD is a significant issue, and that it is important to capture detail about attendance patterns and reasons for school non-attendance

    Dynamic equilibrium sets atomic content of galaxies across cosmic time

    Get PDF
    We analyze 88 independent high-resolution cosmological zoom-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum of baryons throughout cosmic time. The study is motivated by the analytic model of \citet{obreschkow16}, which predicts a relation between the atomic gas fraction fatmf_{\rm atm} and the global atomic stability parameter qjσ/(GM)q \equiv j\sigma / (GM), where MM and jj are the mass and specific angular momentum of the galaxy (stars+cold gas) and σ\sigma is the velocity dispersion of the atomic gas. We show that the simulated galaxies follow this relation from their formation (z4z\simeq4) to present within 0.5\sim 0.5 dex. To explain this behavior, we explore the evolution of the local Toomre stability and find that 90%90\%--100%100\% of the atomic gas in all simulated galaxies is stable at any time. In other words, throughout the entire epoch of peak star formation until today, the timescale for accretion is longer than the timescale to reach equilibrium, thus resulting in a quasi-static equilibrium of atomic gas at any time. Hence, the evolution of fatmf_{\rm atm} depends on the complex hierarchical growth history primarily via the evolution of qq. An exception are galaxies subject to strong environmental effects.Comment: 12 pages, 7 figures; accepted to Ap

    Dauphine Was Right: Masques, the Authenticity of (Un)Performed Identity, and the Two Prologues of Epicene

    Get PDF
    This paper argues that Epicene, Jonson's first public play after being made official court masque writer, is unusually optimistic about the possibilities of drama. The play explores the possibility of creating an authentic personality through performance, an idea that Jonson is often hostile towards. However, Jonson's flirtation with this pro-theater perspective was short lived. For complex reasons, Lady Arbella's complaint about the play led Jonson to once again grow cynical about the possibilities of the public stage. These vacillating perspectives, I argue, can be traced within the two different prologues, which offer two very different perspectives on playing, play going and the theater

    Displaced but not replaced: the impact of e-learning on academic identities in higher education.

    Get PDF
    Challenges facing universities are leading many to implement institutional strategies to incorporate e-learning rather than leaving its adoption up to enthusiastic individuals. Although there is growing understanding about the impact of e-learning on the student experience, there is less understanding of academics’ perceptions of e-learning and its impact on their identities. This paper explores the changing nature of academic identities revealed through case study research into the implementation of e-learning at one UK university. By providing insight into the lived experiences of academics in a university in which technology is not only transforming access to knowledge but also influencing the balance of power between academic and student in knowledge production and use, it is suggested that academics may experience a jolt to their ‘trajectory of self’ when engaging with e-learning. The potential for e-learning to prompt loss of teacher presence and displacement as knowledge expert may appear to undermine the ontological security of their academic identity
    corecore