5,154 research outputs found
Assessing reservoir operations risk under climate change
Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California\u27s Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios
Error Probability Bounds for Balanced Binary Relay Trees
We study the detection error probability associated with a balanced binary
relay tree, where the leaves of the tree correspond to identical and
independent detectors. The root of the tree represents a fusion center that
makes the overall detection decision. Each of the other nodes in the tree are
relay nodes that combine two binary messages to form a single output binary
message. In this way, the information from the detectors is aggregated into the
fusion center via the intermediate relay nodes. In this context, we describe
the evolution of Type I and Type II error probabilities of the binary data as
it propagates from the leaves towards the root. Tight upper and lower bounds
for the total error probability at the fusion center as functions of are
derived. These characterize how fast the total error probability converges to 0
with respect to , even if the individual sensors have error probabilities
that converge to 1/2
Submodularity and Optimality of Fusion Rules in Balanced Binary Relay Trees
We study the distributed detection problem in a balanced binary relay tree,
where the leaves of the tree are sensors generating binary messages. The root
of the tree is a fusion center that makes the overall decision. Every other
node in the tree is a fusion node that fuses two binary messages from its child
nodes into a new binary message and sends it to the parent node at the next
level. We assume that the fusion nodes at the same level use the same fusion
rule. We call a string of fusion rules used at different levels a fusion
strategy. We consider the problem of finding a fusion strategy that maximizes
the reduction in the total error probability between the sensors and the fusion
center. We formulate this problem as a deterministic dynamic program and
express the solution in terms of Bellman's equations. We introduce the notion
of stringsubmodularity and show that the reduction in the total error
probability is a stringsubmodular function. Consequentially, we show that the
greedy strategy, which only maximizes the level-wise reduction in the total
error probability, is within a factor of the optimal strategy in terms of
reduction in the total error probability
Chiral black hole in three-dimensional gravitational Chern-Simons
A chiral black hole can be defined from the three-dimensional pure
gravitational Chern-Simons action as an independent gravitational theory. The
third order derivative of the Cotton tensor gives a dimensional constant which
plays a role of the cosmological constant. The handedness of angular momentum
depends on the signature of the Chern-Simons coefficient. Even in the massless
black hole which corresponds to the static black hole, it has a nonvanishing
angular momentum. We also study statistical entropy and thermodynamic
stability.Comment: 6 pages, a reference added, minor changes to introductio
Using a Gridded Global Dataset to Characterize Regional Hydroclimate in Central Chile
Central Chile is facing dramatic projections of climate change, with a consensus for declining precipitation, negatively affecting hydropower generation and irrigated agriculture. Rising from sea level to 6000 m within a distance of 200 km, precipitation characterization is difficult because of a lack of long-term observations, especially at higher elevations. For understanding current mean and extreme conditions and recent hydroclimatological change, as well as to provide a baseline for downscaling climate model projections, a temporally and spatially complete dataset of daily meteorology is essential. The authors use a gridded global daily meteorological dataset at 0.25° resolution for the period 1948–2008, adjusted by monthly precipitation observations interpolated to the same grid using a cokriging method with elevation as a covariate. For validation, daily statistics of the adjusted gridded precipitation are compared to station observations. For further validation, a hydrology model is driven with the gridded 0.25° meteorology and streamflow statistics are compared with observed flow. The high elevation precipitation is validated by comparing the simulated snow extent to Moderate Resolution Imaging Spectroradiometer (MODIS) images. Results show that the daily meteorology with the adjusted precipitation can accurately capture the statistical properties of extreme events as well as the sequence of wet and dry events, with hydrological model results displaying reasonable agreement with observed streamflow and snow extent. This demonstrates the successful use of a global gridded data product in a relatively data-sparse region to capture hydroclimatological characteristics and extremes
Involving Nepali academics in health research
JMBTO SEE JHIn a world dominated by globalization and knowledge exchange conducting research and academic publishing has become increasingly important. In this light it is important to report the findings of research conducted in Nepal as it may be relevant and useful in North Korea as in Namibia. The editorial outlines some of the barriers and opportunities that exist for academics in Nepal
- …
