37,255 research outputs found
Multi-fuel rotary engine for general aviation aircraft
Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed
Oxide-apertured microcavity single-photon emitting diode
We have developed a microcavity single-photon source based on a single
quantum dot within a planar cavity in which wet-oxidation of a high-aluminium
content layer provides lateral confinement of both the photonic mode and the
injection current. Lateral confinement of the optical mode in optically pumped
structures produces a strong enhancement of the radiative decay rate. Using
microcavity structures with doped contact layers, we demonstrate a
single-photon emitting diode where current may be injected into a single dot
Innovative Opportunities for Elementary and Middle School Teachers to Maintain Currency in Mathematics and Science: A Community College-School System Partnership
Since 1992 the Manassas Campus of Northern Virginia Community College – in response to requests from local school systems – has developed four innovative methods of assisting elementary, secondary and middle school teachers to enhance their content knowledge in science and mathematics, as well as integrate curriculum units for classroom presentation. These methods are based on the assumptions that: - While teachers at this level have fundamental understanding of math and science, if they wish to incorporate new concepts or technologies from these fields, graduate level content courses are generally beyond their background level. - Community College faculty can often provide a bridge that connects advanced content in science and mathematics with the applications that can be adapted to elementary/middle school curriculum. - Presenting content to a mixed audience of teachers from K-8 allows teachers to see how content can be adapted to grade levels above and below. - Content delivery methods must be interactive and must be responsive to the multiple demands on these teachers’ time. This requires flexibility in scheduling and course requirements
Thermomechanical characterization of Hastelloy-X under uniaxial cyclic loading
In most high-temperature engineering applications, components are subjected to complex combinations of thermal and mechanical loading during service. A number of viscoplastic constitutive models were proposed which potentially can provide mathematical descriptions of material response under such conditions. Implementation of these models into large finite element codes such as MARC has already resulted in much improved inelastic analysis capability for hot-section aircraft engine components. However, a number of questions remain regarding the validity of methods adopted in characterizing these constitutive models for particular high-temperature materials. One area of concern is that the majority of experimental data available for this purpose are determined under isothermal conditions. This is in contrast to service conditions which, as noted above, almost always involve some form of thermal cycling. The obvious question arises as to whether a constitutive model characterized using an isothermal data base can adequately predict material response under thermomechanical conditions. An experimental program was initiated within the HOST program to address this particular concern. The results of the most recent isothermal and thermomechanical experiments are described
Observation of the Purcell effect in high-index-contrast micropillar
We have fabricated pillar microcavity samples with Bragg mirrors consisting
of alternate layers of GaAs and Aluminium Oxide. Compared to the more widely
studied GaAs/AlAs micropillars these mirrors can achieve higher reflectivities
with fewer layer repeats and reduce the mode volume. We have studied a number
of samples containing a low density of InGaAs/GaAs self assembled quantum dots
in a cavity and here report observation of a three fold enhancement in the
radiative lifetime of a quantum dot exciton state due to the Purcell effect
Standard Model Top Quark Asymmetry at the Fermilab Tevatron
Top quark pair production at proton-antiproton colliders is known to exhibit
a forward-backward asymmetry due to higher-order QCD effects. We explore how
this asymmetry might be studied at the Fermilab Tevatron, including how the
asymmetry depends on the kinematics of extra hard partons. We consider results
for top quark pair events with one and two additional hard jets. We further
note that a similar asymmetry, correlated with the presence of jets, arises in
specific models for parton showers in Monte Carlo simulations. We conclude that
the measurement of this asymmetry at the Tevatron will be challenging, but
important both for our understanding of QCD and for our efforts to model it.Comment: 26 p., 10 embedded figs., comment added, version to appear in PR
Lagrange-Poincare field equations
The Lagrange-Poincare equations of classical mechanics are cast into a field
theoretic context together with their associated constrained variational
principle. An integrability/reconstruction condition is established that
relates solutions of the original problem with those of the reduced problem.
The Kelvin-Noether theorem is formulated in this context. Applications to the
isoperimetric problem, the Skyrme model for meson interaction, metamorphosis
image dynamics, and molecular strands illustrate various aspects of the theory.Comment: Submitted to Journal of Geometry and Physics, 45 pages, 1 figur
A New Measurement of the Stellar Mass Density at z~5: Implications for the Sources of Cosmic Reionization
We present a new measurement of the integrated stellar mass per comoving
volume at redshift 5 determined via spectral energy fitting drawn from a sample
of 214 photometrically-selected galaxies with z'<26.5 in the southern GOODS
field. Following procedures introduced by Eyles et al. (2005), we estimate
stellar masses for various sub-samples for which reliable and unconfused
Spitzer IRAC detections are available. A spectroscopic sample of 14 of the most
luminous sources with =4.92 provides a firm lower limit to the stellar mass
density of 1e6 Msun/Mpc^3. Several galaxies in this sub-sample have masses of
order 10^11 Msun implying significant earlier activity occurred in massive
systems. We then consider a larger sample whose photometric redshifts in the
publicly-available GOODS-MUSIC catalog lie in the range 4.4 <z 5.6. Before
adopting the GOODS-MUSIC photometric redshifts, we check the accuracy of their
photometry and explore the possibility of contamination by low-z galaxies and
low-mass stars. After excising probable stellar contaminants and using the z'-J
color to exclude any remaining foreground red galaxies, we conclude that 196
sources are likely to be at z~5. The implied mass density from the unconfused
IRAC fraction of this sample, scaled to the total available, is 6e6 Msun/Mpc^3.
We discuss the uncertainties as well as the likelihood that we have
underestimated the true mass density. Including fainter and quiescent sources
the total integrated density could be as high as 1e7 Msun/Mpc^3. Using the
currently available (but highly uncertain) rate of decline in the star
formationhistory over 5 <z< 10, a better fit is obtained for the assembled mass
at z~5 if we admit significant dust extinction at early times or extend the
luminosity function to very faint limits. [abridged]Comment: Accepted for Publication in ApJ, 39 page
- …
