16,452 research outputs found

    Entanglement and statistics in Hong-Ou-Mandel interferometry

    Get PDF
    Hong-Ou-Mandel interferometry allows one to detect the presence of entanglement in two-photon input states. The same result holds for two-particles input states which obey to Fermionic statistics. In the latter case however anti-bouncing introduces qualitative differences in the interferometer response. This effect is analyzed in a Gedankenexperiment where the particles entering the interferometer are assumed to belong to a one-parameter family of quons which continuously interpolate between the Bosonic and Fermionic statistics.Comment: 7 pages, 3 figures; minor editorial changes and new references adde

    Synchronized flow and wide moving jams from balanced vehicular traffic

    Full text link
    Recently we proposed an extension to the traffic model of Aw, Rascle and Greenberg. The extended traffic model can be written as a hyperbolic system of balance laws and numerically reproduces the reverse λ\lambda shape of the fundamental diagram of traffic flow. In the current work we analyze the steady state solutions of the new model and their stability properties. In addition to the equilibrium flow curve the trivial steady state solutions form two additional branches in the flow-density diagram. We show that the characteristic structure excludes parts of these branches resulting in the reverse λ\lambda shape of the flow-density relation. The upper branch is metastable against the formation of synchronized flow for intermediate densities and unstable for high densities, whereas the lower branch is unstable for intermediate densities and metastable for high densities. Moreover, the model can reproduce the typical speed of the downstream front of wide moving jams. It further reproduces a constant outflow from wide moving jams, which is far below the maximum free flow. Applying the model to simulate traffic flow at a bottleneck we observe a general pattern with wide moving jams traveling through the bottleneck.Comment: 10 pages, 12 figure

    Tides and the Evolution of Planetary Habitability

    Full text link
    Tides raised on a planet by its host star's gravity can reduce a planet's orbital semi-major axis and eccentricity. This effect is only relevant for planets orbiting very close to their host stars. The habitable zones of low-mass stars are also close-in and tides can alter the orbits of planets in these locations. We calculate the tidal evolution of hypothetical terrestrial planets around low-mass stars and show that tides can evolve planets past the inner edge of the habitable zone, sometimes in less than 1 billion years. This migration requires large eccentricities (>0.5) and low-mass stars (<0.35 M_Sun). Such migration may have important implications for the evolution of the atmosphere, internal heating and the Gaia hypothesis. Similarly, a planet detected interior to the habitable zone could have been habitable in the past. We consider the past habitability of the recently-discovered, ~5 M_Earth planet, Gliese 581 c. We find that it could have been habitable for reasonable choices of orbital and physical properties as recently as 2 Gyr ago. However, when we include constraints derived from the additional companions, we see that most parameter choices that predict past habitability require the two inner planets of the system to have crossed their mutual 3:1 mean motion resonance. As this crossing would likely have resulted in resonance capture, which is not observed, we conclude that Gl 581 c was probably never habitable.Comment: 31 pages, 10 figures, accepted to Astrobiology. A version with full resolution figures is available at http://www.lpl.arizona.edu/~rory/publications/brjg07.pd

    Site-specific spin crossover in Fe2_{2}TiO4_{4} post-spinel under high pressures to near a megabar

    Full text link
    X-ray diffraction studies to ~90 GPa at room temperature show that Fe2_{2}TiO4_{4} ferrous inverse spinel undergoes the following sequence of structural transitions : cubic (Fd3m) to tetragonal (I41/amd)to orthorhombic(Cmcm) to orthorhombic(Pmma),at the indicated onset transition pressures. Within the Cmcm phase, site-specific spin crossover is initiated and involves only highly distorted octahedral sites constituting ~25% of all Fe locations. This is manifest as a steeper volume decrease of dV/V0 ~ 3.5% beyond ~40 GPa and an emergent diamagnetic component discerned in 57Fe M\"ossbauer spectroscopy at variable cryogenic temperatures. A subsequent Cmcm to Pmma Fe/Ti disorder-order reconfiguration is facilitated at 6-fold coordinated (octahedral) sites. The rest of the high-spin Fe in 6-fold and 8-fold coordinated sites (~75% abundance) in the Pmma phase exhibit average saturation internal magnetic fields of Hhf_{hf} ~ 42 T to ~90 GPa, typical of spin-only (orbitally quenched) Fermi-contact values. By contrast average Hhf_{hf} ~ 20 T values, signifying unquenched orbital moments, occur below the 40-45 GPa spin-crossover initiation regime in the Cmcm phase. Therefore site-specific spin crossover invokes a cooperative lattice response and polyhedral distortions at the rest of the high-spin Fe sites, translating to 3d level (sub-band) changes and consequential orbital moment quenching. Near ~90 GPa Fe2_{2}TiO4_{4} is a partially spin-converted chemically ordered Pmma post-spinel structure having a persistent charge gap of ~100 meV. Despite structural symmetry changes, partial spin crossover and lattice compressibility resulting in a ~33% total reduction in unit-cell volume and corresponding 3d bandwidth broadening, strong electron correlations persist at high densification.Comment: 35 Pages and 7 Figure

    Training deep neural density estimators to identify mechanistic models of neural dynamics

    Get PDF
    Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators-- trained using model simulations-- to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features, and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin-Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics

    Spacelike Ricci Inheritance Vectors in a Model of String Cloud and String Fluid Stress Tensor

    Full text link
    We study the consequences of the existence of spacelike Ricci inheritance vectors (SpRIVs) parallel to xax^a for model of string cloud and string fluid stress tensor in the context of general relativity. Necessary and sufficient conditions are derived for a spacetime with a model of string cloud and string fluid stress tensor to admit a SpRIV and a SpRIV which is also a spacelike conformal Killing vector (SpCKV). Also, some results are obtained.Comment: 11 page

    Volatile organic emissions from the distillation and pyrolysis of vegetation

    No full text
    International audienceLeaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa) were heated from 30 to 300°C and volatile organic compound (VOC) emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 gC/kgC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC)/gC(CO2)) measured during the same experiments, in air and nitrogen atmospheres, respectively. The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and endothermic pyrolysis under low turbulence conditions may produce flammable concentrations near leaves and may facilitate the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions

    Search for exchange-antisymmetric two-photon states

    Get PDF
    Atomic two-photon J=0 \leftrightarrowJ'=1 transitions are forbidden for photons of the same energy. This selection rule is related to the fact that photons obey Bose-Einstein statistics. We have searched for small violations of this selection rule by studying transitions in atomic Ba. We set a limit on the probability vv that photons are in exchange-antisymmetric states: v<1.2107v<1.2\cdot10^{-7}.Comment: 5 pages, 4 figures, ReVTeX and .eps. Submitted to Phys. Rev. Lett. Revised version 9/25/9

    Anyons as quon particles

    Full text link
    The momentum operator representation of nonrelativistic anyons is developed in the Chern - Simons formulation of fractional statistics. The connection between anyons and the q-deformed bosonic algebra is established.Comment: 10 pages,Late
    corecore