44,508 research outputs found
Simulations of a classical spin system with competing superexchange and double-exchange interactions
Monte-Carlo simulations and ground-state calculations have been used to map
out the phase diagram of a system of classical spins, on a simple cubic
lattice, where nearest-neighbor pairs of spins are coupled via competing
antiferromagnetic superexchange and ferromagnetic double-exchange interactions.
For a certain range of parameters, this model is relevant for some magnetic
materials, such as doped manganites, which exhibit the remarkable colossal
magnetoresistance effect. The phase diagram includes two regions in which the
two sublattice magnetizations differ in magnitude. Spin-dynamics simulations
have been used to compute the time- and space-displaced spin-spin correlation
functions, and their Fourier transforms, which yield the dynamic structure
factor for this system. Effects of the double-exchange
interaction on the dispersion curves are shown.Comment: Latex, 3 pages, 3 figure
Supersymmetric reduced models with a symmetry based on Filippov algebra
Generalizations of the reduced model of super Yang-Mills theory obtained by
replacing the Lie algebra structure to Filippov -algebra structures are
studied. Conditions for the reduced model actions to be supersymmetric are
examined. These models are related with what we call \{cal N}_{min}=2 super
-brane actions.Comment: v3: In the previous versions we overlooked that Eq.(3.9) holds more
generally, and missed some supersymmetric actions. Those are now included and
modifications including a slight change in the title were made accordingly.
1+18 page
Improved Spin Dynamics Simulations of Magnetic Excitations
Using Suzuki-Trotter decompositions of exponential operators we describe new
algorithms for the numerical integration of the equations of motion for
classical spin systems. These techniques conserve spin length exactly and, in
special cases, also conserve the energy and maintain time reversibility. We
investigate integration schemes of up to eighth order and show that these new
algorithms can be used with much larger time steps than a well established
predictor-corrector method. These methods may lead to a substantial speedup of
spin dynamics simulations, however, the choice of which order method to use is
not always straightforward.Comment: J. Mod. Phys. C (in press
Materials thermal and thermoradiative properties/characterization technology
Reliable properties data on well characterized materials are necessary for design of experiments and interpretation of experimental results. The activities of CINDAS to provide data bases and predict properties are discussed. An understanding of emissivity behavior is important in order to select appropriate methods for non-contact temperature determination. Related technical issues are identified and recommendations are offered
Noncommutative D-Brane in Non-Constant NS-NS B Field Background
We show that when the field strength H of the NS-NS B field does not vanish,
the coordinates X and momenta P of an open string endpoints satisfy a set of
mixed commutation relations among themselves. Identifying X and P with the
coordinates and derivatives of the D-brane world volume, we find a new type of
noncommutative spaces which is very different from those associated with a
constant B field background.Comment: 11 pages, Latex, minor modification
Gutzwiller density functional theory for correlated electron systems
We develop a new density functional theory (DFT) and formalism for correlated
electron systems by taking as reference an interacting electron system that has
a ground state wavefunction which obeys exactly the Gutzwiller approximation
for all one particle operators. The solution of the many electron problem is
mapped onto the self-consistent solution of a set of single particle
Schroedinger equations analogous to standard DFT-LDA calculations.Comment: 4 page
- …
