1,791 research outputs found
Three-dimensional shapelets and an automated classification scheme for dark matter haloes
We extend the two-dimensional Cartesian shapelet formalism to d-dimensions.
Concentrating on the three-dimensional case, we derive shapelet-based equations
for the mass, centroid, root-mean-square radius, and components of the
quadrupole moment and moment of inertia tensors. Using cosmological N-body
simulations as an application domain, we show that three-dimensional shapelets
can be used to replicate the complex sub-structure of dark matter halos and
demonstrate the basis of an automated classification scheme for halo shapes. We
investigate the shapelet decomposition process from an algorithmic viewpoint,
and consider opportunities for accelerating the computation of shapelet-based
representations using graphics processing units (GPUs).Comment: 19 pages, 11 figures, accepted for publication in MNRA
Gravitational collapse of spherically symmetric plasmas in Einstein-Maxwell spacetimes
We utilize a recent formulation of a spherically symmetric spacetime endowed
with a general decomposition of the energy momentum tensor [Phys. Rev. D, 75,
024031 (2007)] to derive equations governing spherically symmetric
distributions of electromagnetic matter. We show the system reduces to the
Reissner-Nordstrom spacetime in general, spherically symmetric coordinates in
the vacuum limit. Furthermore, we show reduction to the charged Vaidya
spacetime in non-null coordinates when certain equations of states are chosen.
A model of gravitational collapse is discussed whereby a charged fluid resides
within a boundary of finite radial extent on the initial hypersurface, and is
allowed to radiate charged particles. Our formalism allows for the discussion
of all regions in this model without the need for complicated matching schemes
at the interfaces between successive regions. As further examples we consider
the collapse of a thin shell of charged matter onto a Reissner-Nordstrom black
hole. Finally, we reduce the entire system of equations to the static case such
that we have the equations for hydrostatic equilibrium of a charged fluid.Comment: Accepted for publication in Phys. Rev.
Spherically Symmetric Gravitational Collapse of General Fluids
We express Einstein's field equations for a spherically symmetric ball of
general fluid such that they are conducive to an initial value problem. We show
how the equations reduce to the Vaidya spacetime in a non-null coordinate
frame, simply by designating specific equations of state. Furthermore, this
reduces to the Schwarzschild spacetime when all matter variables vanish. We
then describe the formulation of an initial value problem, whereby a general
fluid ball with vacuum exterior is established on an initial spacelike slice.
As the system evolves, the fluid ball collapses and emanates null radiation
such that a region of Vaidya spacetime develops. Therefore, on any subsequent
spacelike slice there exists three regions; general fluid, Vaidya and
Schwarzschild, all expressed in a single coordinate patch with two
free-boundaries determined by the equations. This implies complicated matching
schemes are not required at the interfaces between the regions, instead, one
simply requires the matter variables tend to the appropriate equations of
state. We also show the reduction of the system of equations to the static
cases, and show staticity necessarily implies zero ``heat flux''. Furthermore,
the static equations include a generalization of the Tolman-Oppenheimer-Volkoff
equations for hydrostatic equilibrium to include anisotropic stresses in
general coordinates.Comment: 11 pages, 3 figures, submitted to Phys. Rev.
Gravitational waves from Sco X-1: A comparison of search methods and prospects for detection with advanced detectors
The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most
luminous source of continuous gravitational-wave radiation for interferometers
such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be
sustained by active accretion of matter from its binary companion. With the
Advanced Detector Era fast approaching, work is underway to develop an array of
robust tools for maximizing the science and detection potential of Sco X-1. We
describe the plans and progress of a project designed to compare the numerous
independent search algorithms currently available. We employ a mock-data
challenge in which the search pipelines are tested for their relative
proficiencies in parameter estimation, computational efficiency, robust- ness,
and most importantly, search sensitivity. The mock-data challenge data contains
an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a
frequency band of 50-1500 Hz. Simulated detector noise was generated assuming
the expected best strain sensitivity of Advanced LIGO and Advanced VIRGO ( Hz). A distribution of signal amplitudes was then
chosen so as to allow a useful comparison of search methodologies. A factor of
2 in strain separates the quietest detected signal, at
strain, from the torque-balance limit at a spin frequency of 300 Hz, although
this limit could range from (25 Hz) to (750 Hz) depending on the unknown frequency of Sco X-1. With future
improvements to the search algorithms and using advanced detector data, our
expectations for probing below the theoretical torque-balance strain limit are
optimistic.Comment: 33 pages, 11 figure
Gender-Related Differences in the Prevalence of Cardiovascular Disease Risk Factors and their Correlates in Urban Tanzania.
\ud
Urban areas in Africa suffer a serious problem with dual burden of infectious diseases and emerging chronic diseases such as cardiovascular diseases (CVD) and diabetes which pose a serious threat to population health and health care resources. However in East Africa, there is limited literature in this research area. The objective of this study was to examine the prevalence of cardiovascular disease risk factors and their correlates among adults in Temeke, Dar es Salaam, Tanzania. Results of this study will help inform future research and potential preventive and therapeutic interventions against such chronic diseases. The study design was a cross sectional epidemiological study. A total of 209 participants aged between 44 and 66 years were included in the study. A structured questionnaire was used to evaluate socioeconomic and lifestyle characteristics. Blood samples were collected and analyzed to measure lipid profile and fasting glucose levels. Cardiovascular risk factors were defined using World Health Organization criteria. The age-adjusted prevalence of obesity (BMI > or = 30) was 13% and 35%, among men and women (p = 0.0003), respectively. The prevalence of abdominal obesity was 11% and 58% (p < 0.0001), and high WHR (men: >0.9, women: >0.85) was 51% and 73% (p = 0.002) for men and women respectively. Women had 4.3 times greater odds of obesity (95% CI: 1.9-10.1), 14.2-fold increased odds for abdominal adiposity (95% CI: 5.8-34.6), and 2.8 times greater odds of high waist-hip-ratio (95% CI: 1.4-5.7), compared to men. Women had more than three-fold greater odds of having metabolic syndrome (p = 0.001) compared to male counterparts, including abdominal obesity, low HDL-cholesterol, and high fasting blood glucose components. In contrast, female participants had 50% lower odds of having hypertension, compared to men (95%CI: 0.3-1.0). Among men, BMI and waist circumference were significantly correlated with blood pressure, triglycerides, total, LDL-, and HDL-cholesterol (BMI only), and fasting glucose; in contrast, only blood pressure was positively associated with BMI and waist circumference in women. The prevalence of CVD risk factors was high in this population, particularly among women. Health promotion, primary prevention, and health screening strategies are needed to reduce the burden of cardiovascular disease in Tanzania.\u
Shape, shear & flexion: An analytic flexion formalism for realistic mass profiles
Flexion is a non-linear gravitational lensing effect that arises from
gradients in the convergence and shear across an image. We derive a formalism
that describes non-linear gravitational lensing by a circularly symmetric lens
in the thin-lens approximation. This provides us with relatively simple
expressions for first- and second-flexion in terms of only the surface density
and projected mass distribution of the lens. We give details of exact lens
models, in particular providing flexion calculations for a Sersic-law profile,
which has become increasingly popular over recent years. We further provide a
single resource for the analytic forms of convergence, shear, first- and
second-flexion for the following mass distributions: a point mass, singular
isothermal sphere (SIS); Navarro-Frenk-White (NFW) profile; Sersic-law profile.
We quantitatively compare these mass distributions and show that the
convergence and first-flexion are better indicators of the Sersic shape
parameter, while for the concentration of NFW profiles the shear and
second-flexion terms are preferred.Comment: Accepted for publication in MNRA
The Cosmic Microwave Background in an Inhomogeneous Universe - why void models of dark energy are only weakly constrained by the CMB
The dimming of Type Ia supernovae could be the result of Hubble-scale
inhomogeneity in the matter and spatial curvature, rather than signaling the
presence of a dark energy component. A key challenge for such models is to fit
the detailed spectrum of the cosmic microwave background (CMB). We present a
detailed discussion of the small-scale CMB in an inhomogeneous universe,
focusing on spherically symmetric `void' models. We allow for the dynamical
effects of radiation while analyzing the problem, in contrast to other work
which inadvertently fine tunes its spatial profile. This is a surprisingly
important effect and we reach substantially different conclusions. Models which
are open at CMB distances fit the CMB power spectrum without fine tuning; these
models also fit the supernovae and local Hubble rate data which favours a high
expansion rate. Asymptotically flat models may fit the CMB, but require some
extra assumptions. We argue that a full treatment of the radiation in these
models is necessary if we are to understand the correct constraints from the
CMB, as well as other observations which rely on it, such as spectral
distortions of the black body spectrum, the kinematic Sunyaev-Zeldovich effect
or the Baryon Acoustic Oscillations.Comment: 23 pages with 14 figures. v2 has considerably extended discussion and
analysis, but the basic results are unchanged. v3 is the final versio
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
The Tensor-Vector-Scalar theory and its cosmology
Over the last few decades, astronomers and cosmologists have accumulated vast
amounts of data clearly demonstrating that our current theories of fundamental
particles and of gravity are inadequate to explain the observed discrepancy
between the dynamics and the distribution of the visible matter in the
Universe. The Modified Newtonian Dynamics (MOND) proposal aims at solving the
problem by postulating that Newton's second law of motion is modified for
accelerations smaller than ~10^{-10}m/s^2. This simple amendment, has had
tremendous success in explaining galactic rotation curves. However, being
non-relativistic, it cannot make firm predictions for cosmology.
A relativistic theory called Tensor-Vector-Scalar (TeVeS) has been proposed
by Bekenstein building on earlier work of Sanders which has a MOND limit for
non-relativistic systems.
In this article I give a short introduction to TeVeS theory and focus on its
predictions for cosmology as well as some non-cosmological studies.Comment: 44 pages, topical review for Classical and Quantum Gravit
- …
