1,011 research outputs found

    Spin nematics and magnetization plateau transition in anisotropic Kagome magnets

    Full text link
    We study S=1 kagome antiferromagnets with isotropic Heisenberg exchange JJ and strong easy axis single-ion anisotropy DD. For DJD \gg J, the low-energy physics can be described by an effective S=1/2S=1/2 XXZXXZ model with antiferromagnetic JzJJ_z \sim J and ferromagnetic JJ2/DJ_\perp \sim J^2/D. Exploiting this connection, we argue that non-trivial ordering into a "spin-nematic" occurs whenever DD dominates over JJ, and discuss its experimental signatures. We also study a magnetic field induced transition to a magnetization plateau state at magnetization 1/3 which breaks lattice translation symmetry due to ordering of the SzS^z and occupies a lobe in the B/JzB/J_z-Jz/JJ_z/J_\perp phase diagram.Comment: 4pages, two-column format, three .eps figure

    Long term Ultra-Violet Variability of Seyfert galaxies

    Get PDF
    Flux variability is one of the defining characteristics of Seyfert galaxies, a class of active galactic nuclei (AGN). Though these variations are observed over a wide range of wavelengths, results on their flux variability characteristics in the ultra-violet (UV) band are very limited. We present here the long term UV flux variability characteristics of a sample of fourteen Seyfert galaxies using data from the International Ultraviolet Explorer acquired between 1978 and 1995. We found that all the sources showed flux variations with no statistically significant difference in the amplitude of UV flux variation between shorter and longer wavelengths. Also, the flux variations between different near-UV (NUV, 1850 - 3300 A) and far-UV (FUV, 1150 - 2000 A) passbands in the rest frames of the objects are correlated with no time lag. The data show indications of (i) a mild negative correlation of UV variability with bolometric luminosity and (ii) weak positive correlation between UV variability and black hole mass. At FUV, about 50% of the sources show a strong correlation between spectral indices and flux variations with a hardening when brightening behaviour, while for the remaining sources the correlation is moderate. In NUV, the sources do show a harder when brighter trend, however, the correlation is either weak or moderate.Comment: Accepted by Journal of Astrophysics and Astronom

    Spin and energy correlations in the one dimensional spin 1/2 Heisenberg model

    Full text link
    In this paper, we study the spin and energy dynamic correlations of the one dimensional spin 1/2 Heisenberg model, using mostly exact diagonalization numerical techniques. In particular, observing that the uniform spin and energy currents decay to finite values at long times, we argue for the absence of spin and energy diffusion in the easy plane anisotropic Heisenberg model.Comment: 10 pages, 3 figures, gzipped postscrip

    The Smallest Molecular Switch

    Full text link
    Ab-initio total energy calculations reveal benzene-dithiolate (BDT) molecules on a gold surface, contacted by a monoatomic gold STM tip to have two classes of low energy conformations with differing symmetries. Lateral motion of the tip or excitation of the molecule cause it to change from one conformation class to the other and to switch between a strongly and a weakly conducting state. Thus, surprisingly, despite their apparent simplicity these Au/BDT/Au nanowires are shown to be electrically bi-stable switches, the smallest two-terminal molecular switches to date. Experiments with a conventional or novel self-assembled STM are proposed to test these predictions.Comment: 8 pages, 3 figure

    Multicritical crossovers near the dilute Bose gas quantum critical point

    Full text link
    Many zero temperature transitions, involving the deviation in the value of a U(1)U(1) conserved charge from a quantized value, are described by the dilute Bose gas quantum critical point. On such transitions, we study the consequences of perturbations which break the symmetry down to ZNZ_N in dd spatial dimensions. For the case d=1d=1, N=2N=2, we obtain exact, finite temperature, multicritical crossover functions by a mapping to an integrable lattice model.Comment: 10 pages, REVTEX 3.0, 2 EPS figure

    The fractional quantum Hall effect in infinite layer systems

    Full text link
    Stacked two dimensional electron systems in transverse magnetic fields exhibit three dimensional fractional quantum Hall phases. We analyze the simplest such phases and find novel bulk properties, e.g., irrational braiding. These phases host ``one and a half'' dimensional surface phases in which motion in one direction is chiral. We offer a general analysis of conduction in the latter by combining sum rule and renormalization group arguments, and find that when interlayer tunneling is marginal or irrelevant they are chiral semi-metals that conduct only at T > 0 or with disorder.Comment: RevTeX 3.0, 4p., 2 figs with epsf; reference to the detailed companion paper cond-mat/0006506 adde

    Dynamics of Ordering of Heisenberg Spins with Torque --- Nonconserved Case. I

    Full text link
    We study the dynamics of ordering of a nonconserved Heisenberg magnet. The dynamics consists of two parts --- an irreversible dissipation into a heat bath and a reversible precession induced by a torque due to the local molecular field. For quenches to zero temperature, we provide convincing arguments, both numerically (Langevin simulation) and analytically (approximate closure scheme due to Mazenko), that the torque is irrelevant at late times. We subject the Mazenko closure scheme to systematic numerical tests. Such an analysis, carried out for the first time on a vector order parameter, shows that the closure scheme performs respectably well. For quenches to TcT_c, we show, to O(ϵ2){\cal O}(\epsilon^2), that the torque is irrelevant at the Wilson-Fisher fixed point.Comment: 13 pages, REVTEX, and 19 .eps figures, compressed, Submitted to Phys. Rev.

    Universal properties of thermal and electrical conductivity of gauge theory plasmas from holography

    Full text link
    We propose that for conformal field theories admitting gravity duals, the thermal conductivity is fixed by the central charges in a universal manner. Though we do not have a proof as yet, we have checked our proposal against several examples. This proposal, if correct, allows us to express electrical conductivity in terms of thermodynamical quantities even in the presence of chemical potential.Comment: 13 pages, appendix added, close to journal versio

    Dynamics and transport in random quantum systems governed by strong-randomness fixed points

    Get PDF
    We present results on the low-frequency dynamical and transport properties of random quantum systems whose low temperature (TT), low-energy behavior is controlled by strong disorder fixed points. We obtain the momentum and frequency dependent dynamic structure factor in the Random Singlet (RS) phases of both spin-1/2 and spin-1 random antiferromagnetic chains, as well as in the Random Dimer (RD) and Ising Antiferromagnetic (IAF) phases of spin-1/2 random antiferromagnetic chains. We show that the RS phases are unusual `spin metals' with divergent low-frequency spin conductivity at T=0, and we also follow the conductivity through novel `metal-insulator' transitions tuned by the strength of dimerization or Ising anisotropy in the spin-1/2 case, and by the strength of disorder in the spin-1 case. We work out the average spin and energy autocorrelations in the one-dimensional random transverse field Ising model in the vicinity of its quantum critical point. All of the above calculations are valid in the frequency dominated regime \omega \agt T, and rely on previously available renormalization group schemes that describe these systems in terms of the properties of certain strong-disorder fixed point theories. In addition, we obtain some information about the behavior of the dynamic structure factor and dynamical conductivity in the opposite `hydrodynamic' regime ω<T\omega < T for the special case of spin-1/2 chains close to the planar limit (the quantum x-y model) by analyzing the corresponding quantities in an equivalent model of spinless fermions with weak repulsive interactions and particle-hole symmetric disorder.Comment: Long version (with many additional results) of Phys. Rev. Lett. {\bf 84}, 3434 (2000) (available as cond-mat/9904290); two-column format, 33 pages and 8 figure

    Disorder Induced Phases in Higher Spin Antiferromagnetic Heisenberg Chains

    Full text link
    Extensive DMRG calculations for spin S=1/2 and S=3/2 disordered antiferromagnetic Heisenberg chains show a rather distinct behavior in the two cases. While at sufficiently strong disorder both systems are in a random singlet phase, we show that weak disorder is an irrelevant perturbation for the S=3/2 chain, contrary to what expected from a naive application of the Harris criterion. The observed irrelevance is attributed to the presence of a new correlation length due to enhanced end-to-end correlations. This phenomenon is expected to occur for all half-integer S > 1/2 chains. A possible phase diagram of the chain for generic S is also discussed.Comment: 6 Pages and 6 figures. Final version as publishe
    corecore