66 research outputs found
Interleukin 7 from Maternal Milk Crosses the Intestinal Barrier and Modulates T- Cell Development in Offspring
Background
Breastfeeding protects against illnesses and death in hazardous environments, an
effect partly mediated by improved immune function. One hypothesis suggests that
factors within milk supplement the inadequate immune response of the offspring,
but this has not been able to account for a series of observations showing that
factors within maternally derived milk may supplement the development of the
immune system through a direct effect on the primary lymphoid organs. In a
previous human study we reported evidence suggesting a link between IL-7 in
breast milk and the thymic output of infants. Here we report evidence in mice of
direct action of maternally-derived IL-7 on T cell development in the offspring.
Methods and Findings
We have used recombinant IL-7 labelled with a fluorescent dye to trace the
movement in live mice of IL-7 from the stomach across the gut and into the
lymphoid tissues. To validate the functional ability of maternally derived IL-
7 we cross fostered IL-7 knock-out mice onto normal wild type mothers. Subsets
of thymocytes and populations of peripheral T cells were significantly higher
than those found in knock-out mice receiving milk from IL-7 knock-out mothers.
Conclusions/Significance Our study provides direct evidence that interleukin 7,
a factor which is critical in the development of T lymphocytes, when maternally
derived can transfer across the intestine of the offspring, increase T cell
production in the thymus and support the survival of T cells in the peripheral
secondary lymphoid tissue
How is Technology Shaping the Future of Study?
The book How is Technology Shaping the Future of Study? delves into the potential benefits and drawbacks of technological advancements in education. The book is a collection of graduate student writings from the 2023 summer Education Doctorate Residency at Winona State University.https://openriver.winona.edu/educationeddbooks/1004/thumbnail.jp
Combining Nitrous Oxide with Carbon Dioxide Decreases the Time to Loss of Consciousness during Euthanasia in Mice — Refinement of Animal Welfare?
Carbon dioxide (CO2) is the most commonly used euthanasia agent for rodents despite potentially causing pain and distress. Nitrous oxide is used in man to speed induction of anaesthesia with volatile anaesthetics, via a mechanism referred to as the “second gas” effect. We therefore evaluated the addition of Nitrous Oxide (N2O) to a rising CO2 concentration could be used as a welfare refinement of the euthanasia process in mice, by shortening the duration of conscious exposure to CO2. Firstly, to assess the effect of N2O on the induction of anaesthesia in mice, 12 female C57Bl/6 mice were anaesthetized in a crossover protocol with the following combinations: Isoflurane (5%)+O2 (95%); Isoflurane (5%)+N2O (75%)+O2 (25%) and N2O (75%)+O2 (25%) with a total flow rate of 3l/min (into a 7l induction chamber). The addition of N2O to isoflurane reduced the time to loss of the righting reflex by 17.6%. Secondly, 18 C57Bl/6 and 18 CD1 mice were individually euthanized by gradually filling the induction chamber with either: CO2 (20% of the chamber volume.min−1); CO2+N2O (20 and 60% of the chamber volume.min−1 respectively); or CO2+Nitrogen (N2) (20 and 60% of the chamber volume.min−1). Arterial partial pressure (Pa) of O2 and CO2 were measured as well as blood pH and lactate. When compared to the gradually rising CO2 euthanasia, addition of a high concentration of N2O to CO2 lowered the time to loss of righting reflex by 10.3% (P<0.001), lead to a lower PaO2 (12.55±3.67 mmHg, P<0.001), a higher lactataemia (4.64±1.04 mmol.l−1, P = 0.026), without any behaviour indicative of distress. Nitrous oxide reduces the time of conscious exposure to gradually rising CO2 during euthanasia and hence may reduce the duration of any stress or distress to which mice are exposed during euthanasia
Regulation of reaginic antibody production in mice. I. Suppression by antigen of IgE antibody production in vitro.
Adjuvant and immunogenic properties of bacterial lipopolysaccharide in ige and igg1 antibody formation in mice.
Reaginic antibody production to protein antigens of Escherichia coli and Pseudomonas aeruginosa by mice
Water-soluble antigens isolated from acetone-dried, gram-negative bacteria elicited reaginic antibody formation in mice. Antibodies specific for Escherichia coli antigens reacted with antigens isolated from several enterobacterial species tested, but not with antigens isolated from Pseudomonas aeruginosa. Reaginic antibodies induced by antigens isolated from a P. aeruginosa strain reacted with antigens isolated from several P.aeruginosa serotypes as well as with a purified protein component of the envelope of P. aeruginosa. The anti-Pseudomonas reagins did not cross-react with enterobacterial antigens. Antigenicity of the bacterial extracts was destroyed by trypsin treatment and reduced by heating, which suggested that the antigens were protein in nature. Whole bacterial cells adsorbed out reaginic antibodies, indicating that the antigens are located at or near the surface of the bacteria.</jats:p
- …
