564 research outputs found
Cascade of magnetic field induced Lifshitz transitions in the ferromagnetic Kondo lattice material YbNi4P2
A ferromagnetic quantum critical point is thought not to exist in two and
three-dimensional metallic systems yet is realized in the Kondo lattice
compound YbNi4(P,As)2, possibly due to its one-dimensionality. It is crucial to
investigate the dimensionality of the Fermi surface of YbNi4P2 experimentally
but common probes such as ARPES and quantum oscillation measurements are
lacking. Here, we studied the magnetic field dependence of transport and
thermodynamic properties of YbNi4P2. The Kondo effect is continuously
suppressed and additionally we identify nine Lifshitz transitions between 0.4
and 18 T. We analyze the transport coefficients in detail and identify the type
of Lifshitz transitions as neck or void type to gain information on the Fermi
surface of YbNi4P2. The large number of Lifshitz transitions observed within
this small energy window is unprecedented and results from the particular flat
renormalized band structure with strong 4f-electron character shaped by the
Kondo lattice effect.Comment: 6 pages, 4 figure
Interplay between Kondo suppression and Lifshitz transitions in YbRhSi at high magnetic fields
We investigate the magnetic field dependent thermopower, thermal
conductivity, resistivity and Hall effect in the heavy fermion metal YbRh2Si2.
In contrast to reports on thermodynamic measurements, we find in total three
transitions at high fields, rather than a single one at 10 T. Using the Mott
formula together with renormalized band calculations, we identify Lifshitz
transitions as their origin. The predictions of the calculations show that all
experimental results rely on an interplay of a smooth suppression of the Kondo
effect and the spin splitting of the flat hybridized bands.Comment: 5 pages, 4 figure
Enhancement of the Nernst effect by stripe order in a high-Tc superconductor
The Nernst effect in metals is highly sensitive to two kinds of phase
transition: superconductivity and density-wave order. The large positive Nernst
signal observed in hole-doped high-Tc superconductors above their transition
temperature Tc has so far been attributed to fluctuating superconductivity.
Here we show that in some of these materials the large Nernst signal is in fact
caused by stripe order, a form of spin / charge modulation which causes a
reconstruction of the Fermi surface. In LSCO doped with Nd or Eu, the onset of
stripe order causes the Nernst signal to go from small and negative to large
and positive, as revealed either by lowering the hole concentration across the
quantum critical point in Nd-LSCO, or lowering the temperature across the
ordering temperature in Eu-LSCO. In the latter case, two separate peaks are
resolved, respectively associated with the onset of stripe order at high
temperature and superconductivity near Tc. This sensitivity to Fermi-surface
reconstruction makes the Nernst effect a promising probe of broken symmetry in
high-Tc superconductors
Decompressive Hemicraniectomy: Predictors and Functional Outcome In Patients With Ischemic Stroke
BACKGROUND
Patients presenting with large ischemic strokes may develop uncontrollable, progressive brain edema that risks compression of brain parenchyma and cerebral herniation.1 Edema that does not respond to medical treatment necessitates decompressive hemicraniectomy (DH) as a life-saving procedure. The functional outcome of patients is uncertain and the patient’s family is presented with the difficult decision of intervention with DH. While the functional outcome of patients is not worsened by DH,2 neurological deficit is likely as a result of initial large-territory ischemia. The correlation of specific clinical variables preceding DH to patient outcome helps inform clinicians and families about prognosis.3 This study identifies an array of clinical variables in patients who underwent DH for ischemic stroke in order to investigate potential predictors of functional outcome.
METHOD
A total of 1,624 subjects that underwent any type of craniectomy from 2006 to 2014 were retrospectively screened via electronic medical record. The specific selection criterion was DH secondary to ischemic stroke involving the middle cerebral artery (MCA), internal carotid artery (ICA), or both. Subjects were excluded if they underwent craniectomy for any reason other than DH for ischemic stroke; or if the MCA or ICA were not implicated. The clinical variables that were collected may be divided into pre-DH and post-DH. The pre-DH variables involve patient demographics and past medical history, in addition to clinical variables during the period of presentation and clinical management leading up to DH. The post-DH variables describe the in-patient recovery period and discharge status. The primary outcome was functional status assessed by the Modified Rankin Scale (MRS) score at 90 days post-DH. The MRS ranges from 0 (no symptoms) to 6 (death) with intermediate values (1-5) representing increasing functional and cognitive disability
Symmetry breaking orbital anisotropy on detwinned Ba(Fe1-xCox)2As2 above the spin density wave transition
Nematicity, defined as broken rotational symmetry, has recently been observed
in competing phases proximate to the superconducting phase in the cuprate high
temperature superconductors. Similarly, the new iron-based high temperature
superconductors exhibit a tetragonal to orthorhombic structural transition
(i.e. a broken C4 symmetry) that either precedes or is coincident with a
collinear spin density wave (SDW) transition in undoped parent compounds, and
superconductivity arises when both transitions are suppressed via doping.
Evidence for strong in-plane anisotropy in the SDW state in this family of
compounds has been reported by neutron scattering, scanning tunneling
microscopy, and transport measurements. Here we present an angle resolved
photoemission spectroscopy study of detwinned single crystals of a
representative family of electron-doped iron-arsenide superconductors,
Ba(Fe1-xCox)2As2 in the underdoped region. The crystals were detwinned via
application of in-plane uniaxial stress, enabling measurements of single domain
electronic structure in the orthorhombic state. At low temperatures, our
results clearly demonstrate an in-plane electronic anisotropy characterized by
a large energy splitting of two orthogonal bands with dominant dxz and dyz
character, which is consistent with anisotropy observed by other probes. For
compositions x>0, for which the structural transition (TS) precedes the
magnetic transition (TSDW), an anisotropic splitting is observed to develop
above TSDW, indicating that it is specifically associated with TS. For
unstressed crystals, the band splitting is observed close to TS, whereas for
stressed crystals the splitting is observed to considerably higher
temperatures, revealing the presence of a surprisingly large in-plane nematic
susceptibility in the electronic structure.Comment: final version published in PNAS, including supplementary informatio
Towards a consistent picture for quasi-1D organic superconductors
The electrical resistivity of the quasi-1D organic superconductor (TMTSF)2PF6
was recently measured at low temperature from the critical pressure needed to
suppress the spin-density-wave state up to a pressure where superconductivity
has almost disappeared. This data revealed a direct correlation between the
onset of superconductivity at Tc and the strength of a non-Fermi-liquid linear
term in the normal-state resistivity, going as r(T) = r0 + AT + BT2 at low
temperature, so that A goes to 0 as Tc goes to 0. Here we show that the
contribution of low-frequency antiferromagnetic fluctuations to the
spin-lattice relaxation rate is also correlated with this non-Fermi-liquid term
AT in the resistivity. These correlations suggest that anomalous scattering and
pairing have a common origin, both rooted in the low-frequency
antiferromagnetic fluctuations measured by NMR. A similar situation may also
prevail in the recently-discovered iron-pnictide superconductors.Comment: ISCOM'09 proceedings to be published in Physica
Effect of Disorder on Fermi surface in Heavy Electron Systems
The Kondo lattice model with substitutional disorder is studied with
attention to the size of the Fermi surface and the associated Dingle
temperature. The model serves for understanding heavy-fermion Ce compounds
alloyed with La according to substitution Ce{x}La{1-x}. The Fermi surface is
identified from the steepest change of the momentum distribution of conduction
electrons, and is derived at low enough temperature by the dynamical mean-field
theory (DMFT) combined with the coherent potential approximation (CPA). The
Fermi surface without magnetic field increases in size with decreasing x from
x=1 (Ce end), and disappears at such x that gives the same number of localized
spins as that of conduction electrons. From the opposite limit of x=0 (La end),
the Fermi surface broadens quickly as x increases, but stays at the same
position as that of the La end. With increasing magnetic field, a metamagnetic
transition occurs, and the Fermi surface above the critical field changes
continuously across the whole range of x. The Dingle temperature takes a
maximum around x=0.5. Implication of the results to experimental observation is
discussed.Comment: 5 pages, 5 figure
Nernst effect of iron pnictide and cuprate superconductors: signatures of spin density wave and stripe order
The Nernst effect has recently proven a sensitive probe for detecting unusual
normal state properties of unconventional superconductors. In particular, it
may sensitively detect Fermi surface reconstructions which are connected to a
charge or spin density wave (SDW) ordered state, and even fluctuating forms of
such a state. Here we summarize recent results for the Nernst effect of the
iron pnictide superconductor , whose ground state evolves
upon doping from an itinerant SDW to a superconducting state, and the cuprate
superconductor which exhibits static stripe
order as a ground state competing with the superconductivity. In , the SDW order leads to a huge Nernst response, which allows
to detect even fluctuating SDW precursors at superconducting doping levels
where long range SDW order is suppressed. This is in contrast to the impact of
stripe order on the normal state Nernst effect in . Here, though signatures of the stripe order are
detectable in the temperature dependence of the Nernst coefficient, its overall
temperature dependence is very similar to that of ,
where stripe order is absent. The anomalies which are induced by the stripe
order are very subtle and the enhancement of the Nernst response due to static
stripe order in as compared to that of the
pseudogap phase in , if any, is very small.Comment: To appear in: 'Properties and applications of thermoelectric
materials - II', V. Zlatic and A. Hewson, editors, Proceedings of NATO
Advanced Research Workshop, Hvar, Croatia, September 19 -25, 2011, NATO
Science for Peace and Security Series B: Physics and Biophysics, (Springer
Science+Business Media B.V. 2012
The NICMOS Snapshot Survey of nearby Galaxies
We present ``snapshot'' observations with the NearInfrared Camera and
MultiObject Spectrometer (NICMOS) on board the Hubble Space Telescope (HST) of
94 nearby galaxies from the Revised Shapley Ames Catalog. Images with 0.2 as
resolution were obtained in two filters, a broad-band continuum filter (F160W,
roughly equivalent to the H-band) and a narrow band filter centered on the
Paschen alpha line (F187N or F190N, depending on the galaxy redshift) with the
51x51 as field of view of the NICMOS camera 3. A first-order continuum
subtraction is performed, and the resulting line maps and integrated Paschen
alpha line fluxes are presented. A statistical analysis indicates that the
average Paschen alpha surface brightness {\bf in the central regions} is
highest in early-type (Sa-Sb) spirals.Comment: Original contained error in flux calibration. Table 1 now has correct
Paschen Alpha fluxes. 14 pages LaTeX with JPEG and PS figures. Also available
at http://icarus.stsci.edu/~boeker/publications.htm
- …
