1,764 research outputs found
Effect of disorder on condensation in the lattice gas model on a random graph
The lattice gas model of condensation in a heterogeneous pore system,
represented by a random graph of cells, is studied using an exact analytical
solution. A binary mixture of pore cells with different coordination numbers is
shown to exhibit two phase transitions as a function of chemical potential in a
certain temperature range. Heterogeneity in interaction strengths is
demonstrated to reduce the critical temperature and, for large enough degree of
disorder, divides the cells into ones which are either on average occupied or
unoccupied. Despite treating the pore space loops in a simplified manner, the
random-graph model provides a good description of condensation in porous
structures containing loops. This is illustrated by considering capillary
condensation in a structural model of mesoporous silica SBA-15.Comment: 22 pages, 16 figure
White matter hyperintensities and within-person variability in community-dwelling adults aged 60–64 years
Estimates of white matter hyperintensities (WMH) derived from T2-weighted MRI were investigated in relation to cognitive performance in 469 healthy community-dwelling adults aged 60–64 years. Frontal lobe WMH but not WMH from other brain regions (temporal, parietal, and occipital lobes, anterior and posterior horn, periventricular body) were associated with elevated within-person reaction time (RT) variability (trial to trial fluctuations in RT performance) but not performance on several other cognitive tasks including psychomotor speed, memory, and global cognition. The findings are consistent with the view that elevated within-person variability is related to neurobiological disturbance, and that attentional mechanisms supported by the frontal cortex play a key role in this type of variability
The Effects of Air and Underwater Blast on Composite Sandwich Panels and Tubular Laminate Structures
The resistance of glass-fibre reinforced polymer (GFRP) sandwich panels and laminate tubes to blast in air and underwater environments has been studied. Procedures for monitoring the structural response of such materials during blast events have been devised. High-speed photography was employed during the air-blast loading of GFRP sandwich panels, in conjunction with digital image correlation (DIC), to monitor the deformation of these structures under shock loading. Failure mechanisms have been revealed by using DIC and confirmed in post-test sectioning. Strain gauges were used to monitor the structural response of similar sandwich materials and GFRP tubular laminates during underwater shocks. The effect of the backing medium (air or water) of the target facing the shock has been identified during these studies. Mechanisms of failure have been established such as core crushing, skin/core cracking, delamination and fibre breakage. Strain gauge data supported the mechanisms for such damage. These studies were part of a research programme sponsored by the Office of Naval Research (ONR) investigating blast loading of composite naval structures. The full-scale experimental results presented here will aid and assist in the development of analytical and computational models. Furthermore, it highlights the importance of support and boundary conditions with regards to blast resistant design
X-ray CT analysis after blast of composite sandwich panels
Four composite sandwich panels with either single density or graded density foam cores and different face-sheet materials were subjected to full-scale underwater blast testing. The panels were subjected to 1kg PE4 charge at a stand-off distance of 1 m. The panel with graded density core and carbon fiber face-sheets had the lowest deflection. Post-blast damage assessment was carried out using X-ray CT scanning. The damage assessment revealed that there is a trade-off between reduced panel deflection and panel damage. This research has been performed as part of a program sponsored by the Office of Naval Research (ONR)
Preventing Suicide in Prisons, Part I Recommendations fromthe International Association for Suicide Prevention Task Force on Suicide in Prisons
Abstract. In 2000 the Department of Mental Health of the World Health Organization (WHO) published a guide named Preventing Suicide. A Resource for Prison Officers as part of the WHO worldwide initiative for the prevention of suicide. In 2007 there are new epidemiological data on prison suicide, a more detailed discussion of risk factors accounting for the generally higher rate of suicide in correctional settings in comparison to the general population, and several strategies for developing screening instruments. As a first step, this paper presents an update of the WHO guide by the Task Force on Suicide in Prisons, created by the International Association for Suicide Prevention. A second paper, by the same Task Force, will present some international comparisons of suicide prevention services in correctional facilities
Compressive strength after blast of sandwich composite materials
Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene–acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson–Cranz scaled distance of 3.02 m kg−1/3, 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411–413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast
Identifying adequate models in physico-mathematics: Descartes' analysis of the rainbow
The physico-mathematics that emerged at the beginning of the seventeenth century entailed the quantitative analysis of the physical nature with optics, meteorology and hydrostatics as its main subjects. Rather than considering physico-mathematics as the mathematization of natural philosophy, it can be characterized it as the physicalization of mathematics, in particular the subordinate mixed mathematics. Such transformation of mixed mathematics was a process in which physico-mathematics became liberated from Aristotelian constraints. This new approach to natural philosophy was strongly influenced by Jesuit writings and experimental practices. In this paper we will look at the strategies in which models were selected from the mixed sciences, engineering and technology adequate for an analysis of the specific phenomena under investigation. We will discuss Descartes’ analysis of the rainbow in the eight discourse of his Meteorology as an example of carefully selected models for physico-mathematical reasoning. We will further demonstrate that these models were readily available from Jesuit education and literature
- …
