652 research outputs found

    FutMon -project - Evolution of a European long-term forest monitoring system

    Get PDF

    Atmospheric neutrino flux from 3-dimensional simulation

    Full text link
    The atmospheric muon and neutrino flux have been simulated using the same approach which successfully accounted for the recent secondary proton, electron and positron flux measurements in orbit by the AMS experiment. For the muon flux, a good agreement is obtained with the CAPRICE and HEAT data for altitudes ranging from sea level up to about 38 km. The general features of the calculated atmospheric neutrino flux are reported and discussed. The flux obtained at the Super-Kamiokande experiment location are reported and compared with other calculations. For low neutrino energies the flux obtained is significantly smaller than that used in the data analysis of underground experiment. The simulation results for the SOUDAN experiment site are also reported.Comment: 33 pages, 27 figures, 12 tables, final version for Phys. Rev.

    A model for A=3 antinuclei production in proton-nucleus collisions

    Get PDF
    A simple coalescence model based on the same diagrammatic approach of antimatter production in hadronic collisions as used previously for antideuterons is used here for the hadroproduction of mass 3 antinuclei. It is shown that the model is able to reproduce the existing experimental data on Tbar and 3hebar production without any additional parameter.Comment: 7 figures. submitted to Eur. Phys. J.

    Non-Relativistic Spacetimes with Cosmological Constant

    Full text link
    Recent data on supernovae favor high values of the cosmological constant. Spacetimes with a cosmological constant have non-relativistic kinematics quite different from Galilean kinematics. De Sitter spacetimes, vacuum solutions of Einstein's equations with a cosmological constant, reduce in the non-relativistic limit to Newton-Hooke spacetimes, which are non-metric homogeneous spacetimes with non-vanishing curvature. The whole non-relativistic kinematics would then be modified, with possible consequences to cosmology, and in particular to the missing-mass problem.Comment: 15 pages, RevTeX, no figures, major changes in the presentation which includes a new title and a whole new emphasis, version to appear in Clas. Quant. Gra

    Newton-Hooke spacetimes, Hpp-waves and the cosmological constant

    Full text link
    We show explicitly how the Newton-Hooke groups act as symmetries of the equations of motion of non-relativistic cosmological models with a cosmological constant. We give the action on the associated non-relativistic spacetimes and show how these may be obtained from a null reduction of 5-dimensional homogeneous pp-wave Lorentzian spacetimes. This allows us to realize the Newton-Hooke groups and their Bargmann type central extensions as subgroups of the isometry groups of the pp-wave spacetimes. The extended Schrodinger type conformal group is identified and its action on the equations of motion given. The non-relativistic conformal symmetries also have applications to time-dependent harmonic oscillators. Finally we comment on a possible application to Gao's generalization of the matrix model.Comment: 21 page

    The AMS-02 RICH Imager Prototype - In-Beam Tests with 20 GeV/c per Nucleon Ions -

    Full text link
    A prototype of the AMS Cherenkov imager (RICH) has been tested at CERN by means of a low intensity 20 GeV/c per nucleon ion beam obtained by fragmentation of a primary beam of Pb ions. Data have been collected with a single beam setting, over the range of nuclear charges 2<Z<~45 in various beam conditions and using different radiators. The charge Z and velocity beta resolutions have been measured.Comment: 4 pages, contribution to the ICRC 200

    Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays

    Full text link
    A proximity focusing Cherenkov imager called CHERCAM, has been built for the charge measurement of nuclear cosmic rays with the CREAM instrument. It consists of a silica aerogel radiator plane across from a detector plane equipped with 1,600 1" diameter photomultipliers. The two planes are separated by a ring expansion gap. The Cherenkov light yield is proportional to the charge squared of the incident particle. The expected relative light collection accuracy is in the few percents range. It leads to an expected single element separation over the range of nuclear charge Z of main interest 1 < Z < 26. CHERCAM is designed to fly with the CREAM balloon experiment. The design of the instrument and the implemented technical solutions allowing its safe operation in high altitude conditions (radiations, low pressure, cold) are presented.Comment: 24 pages, 19 figure

    Very high frequency gravitational wave background in the universe

    Full text link
    Astrophysical sources of high frequency gravitational radiation are considered in association with a new interest to very sensitive HFGW receivers required for the laboratory GW Hertz experiment. A special attention is paid to the phenomenon of primordial black holes evaporation. They act like black body to all kinds of radiation, including gravitons, and, therefore, emit an equilibrium spectrum of gravitons during its evaporation. Limit on the density of high frequency gravitons in the Universe is obtained, and possibilities of their detection are briefly discussed.Comment: 14 page

    The Ring Imaging Cherenkov detector (RICH) of the AMS experiment

    Full text link
    The Alpha Magnetic Spectrometer (AMS) experiment to be installed on the International Space Station (ISS) will be equipped with a proximity focusing Ring Imaging Cherenkov (RICH) detector for measuring the electric charge and velocity of the charged cosmic particles. A RICH prototype consisting of 96 photomultiplier units, including a piece of the conical reflector, was built and its performance evaluated with ion beam data. Preliminary results of the in-beam tests performed with ion fragments resulting from collisions of a 158 GeV/c/nuc primary beam of Indium ions (CERN SPS) on a Pb target are reported. The collected data included tests to the final front-end electronics and to different aerogel radiators. Cherenkov rings for a large range of charged nuclei and with reflected photons were observed. The data analysis confirms the design goals. Charge separation up to Fe and velocity resolution of the order of 0.1% for singly charged particles are obtained.Comment: 29th International Conference on Cosmic Rays (Pune, India
    corecore