4,452 research outputs found

    Central potential and examples of hidden algebra structure

    Get PDF
    We propose two generalisations of the Coulomb potential equation of quantum mechanics and investigate the occurence of algebraic eigenfunctions for the corresponding Scrh\"odinger equations. Some relativistic counterparts of these problems are also discussed.Comment: 8 pages, latex, no figure

    Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression

    Get PDF
    Microspore embryogenesis (ME) is a process in which the gametophytic pollen programme of the microspore is reorientated towards a new embryo sporophytic programme. This process requires a stress treatment, usually performed in the anther or isolated microspores for several days. Despite the universal use of stress to induce ME, very few studies have addressed the physiological processes that occur in the anther during this step. To further understand the processes triggered by stress treatment, we followed the response of anthers by measuring the expression of stress-related genes in two barley (Hordeum vulgare L.) cultivars differing in their ME response. Genes encoding enzymes involved in oxidative stress (glutathione-S-transferase, GST; oxalate oxidase, OxO), in the synthesis of jasmonic acid (13-lipoxygenase, Lox; allene oxide cyclase, AOC; allene oxide synthase, AOS) and in the phenylpropanoid pathway (phenylalanine ammonia lyase, PAL), as well as those encoding PR proteins (Barwin, chitinase 2b, Chit 2b; glucanase, Gluc; basic pathogenesis-related protein 1, PR1; pathogenesis-related protein 10, PR10) were up-regulated in whole anthers upon stress treatment, indicating that anther perceives stress and reacts by triggering general plant defence mechanisms. In particular, both OxO and Chit 2b genes are good markers of anther reactivity owing to their high level of induction during the stress treatment. The effect of copper sulphate appeared to limit the expression of defence-related genes, which may be correlated with its positive effect on the yield of microspor

    Can Andean Potato be agronomically biofortified with iron and zinc fertilizers?

    Get PDF
    This field research shows that application of Zn fertilizers or Zn-enriched NPK fertilizers offers a prompt solution to increasing the Zn concentration in Andean potato tubers, and represents a useful complementary approach to on-going breeding programs. The diploid Chaucha cultivars that showed high tuber Zn concentrations in the absence of Zn fertilization also showed correspondingly higher Zn concentration in tubers following foliar and soil applied Zn. High levels of Zn in potato tubers may significantly improve the diets of Zn-deficient populations with high intake of potato and contribute to better nutritio

    Conductivity in organic semiconductors hybridized with the vacuum field

    Full text link
    Organic semiconductors have generated considerable interest for their potential for creating inexpensive and flexible devices easily processed on a large scale [1-11]. However technological applications are currently limited by the low mobility of the charge carriers associated with the disorder in these materials [5-8]. Much effort over the past decades has therefore been focused on optimizing the organisation of the material or the devices to improve carrier mobility. Here we take a radically different path to solving this problem, namely by injecting carriers into states that are hybridized to the vacuum electromagnetic field. These are coherent states that can extend over as many as 10^5 molecules and should thereby favour conductivity in such materials. To test this idea, organic semiconductors were strongly coupled to the vacuum electromagnetic field on plasmonic structures to form polaritonic states with large Rabi splittings ca. 0.7 eV. Conductivity experiments show that indeed the current does increase by an order of magnitude at resonance in the coupled state, reflecting mostly a change in field-effect mobility as revealed when the structure is gated in a transistor configuration. A theoretical quantum model is presented that confirms the delocalization of the wave-functions of the hybridized states and the consequences on the conductivity. While this is a proof-of-principle study, in practice conductivity mediated by light-matter hybridized states is easy to implement and we therefore expect that it will be used to improve organic devices. More broadly our findings illustrate the potential of engineering the vacuum electromagnetic environment to modify and to improve properties of materials.Comment: 16 pages, 13 figure

    Efficient unidirectional nanoslit couplers for surface plasmons

    Full text link
    Plasmonics is based on surface plasmon polariton (SPP) modes which can be laterally confined below the diffraction limit, thereby enabling ultracompact optical components. In order to exploit this potential, the fundamental bottleneck of poor light-SPP coupling must be overcome. In established SPP sources (using prism, grating} or nanodefect coupling) incident light is a source of noise for the SPP, unless the illumination occurs away from the region of interest, increasing the system size and weakening the SPP intensity. Back-side illumination of subwavelength apertures in optically thick metal films eliminates this problem but does not ensure a unique propagation direction for the SPP. We propose a novel back-side slit-illumination method based on drilling a periodic array of indentations at one side of the slit. We demonstrate that the SPP running in the array direction can be suppressed, and the one propagating in the opposite direction enhanced, providing localized unidirectional SPP launching.Comment: 13 pages, 4 figure

    Characterization and Compensation of the Residual Chirp in a Mach-Zehnder-Type Electro-Optical Intensity Modulator

    Full text link
    We utilize various techniques to characterize the residual phase modulation of a fiber-based Mach-Zehnder electro-optical intensity modulator. A heterodyne technique is used to directly measure the phase change due to a given change in intensity, thereby determining the chirp parameter of the device. This chirp parameter is also measured by examining the ratio of sidebands for sinusoidal amplitude modulation. Finally, the frequency chirp caused by an intensity pulse on the nanosecond time scale is measured via the heterodyne signal. We show that this chirp can be largely compensated with a separate phase modulator. The various measurements of the chirp parameter are in reasonable agreement.Comment: 11 pages, 6 figure

    First Measurement of the rho Spectral Function in High-Energy Nuclear Collisions

    Get PDF
    We report on a precision measurement of low-mass muon pairs in 158 AGeV indium-indium collisions at the CERN SPS. A significant excess of pairs is observed above the yield expected from neutral meson decays. The unprecedented sample size of 360 000 dimuons and the good mass resolution of about 2% allow us to isolate the excess by subtraction of the decay sources. The shape of the resulting mass spectrum is consistent with a dominant contribution from pi+pi-->rho-->mu+mu- annihilation. The associated space-time averaged rho spectral function shows a strong broadening, but essentially no shift in mass. This may rule out theoretical models linking hadron masse

    ϕ\phi Meson Production in In-In Collisions and the ϕ\phi Puzzle

    Full text link
    The NA60 experiment measured dimuon production in In-In collisions at 158 AGeV. This paper presents a high statistics measurement of ϕμμ\phi\to\mu\mu with the specific objective to provide insight on the ϕ\phi puzzle, i.e. the difference in the inverse TT slopes and absolute yields measured by NA49 and NA50 in the kaon and lepton channel, respectively. Transverse momentum distributions were studied as a function of centrality. The slope parameter TT shows a rapid increase with centrality, followed by a saturation. Variations of TT with the fit range of the order of 15 MeV were observed, possibly as a consequence of radial flow. The ϕ\phi meson yield normalized to the number of participants increases with centrality and is consistently higher than the yield measured by the NA49 experiment at any centrality.Comment: 4 Pages, 2 Figures. Proceedings of the 20th^{th} International Conference on Ultra-Relativistic Nucleus Nucleus Collision
    corecore