23 research outputs found
Identification of a BRCA2-Specific modifier locus at 6p24 related to breast cancer risk
Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9×10−8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer
A prognostic index for operable, node-negative breast cancer
Clinical data and samples from patients diagnosed, more than 10 years previously, with operable node-negative breast cancer (participants in the Scottish Adjuvant Tamoxifen trial), were revisited, Cases with two distinct categories of outcome were selected; more than 10 years disease-free survival ('good outcome') or distant relapse within 6 years of diagnosis ('poor outcome'). An initial set of cases was analysed for a range of putative prognostic markers and a prognostic index, distinguishing the two outcome categories, was calculated. This index was then validated by testing its predictive power on a second, independent set of cases. A combination of histological grade plus immunochemical staining for BCL-2, p27 and Cyclin D 1, generated a useful prognostic index for tamoxifen-treated patients but not for those treated by surgery alone, The value of the index was confirmed in a second set of tamoxifen-treated, early stage breast cancers. Over-all, it correctly predicted good and poor outcome in 79 and 74% of cases, respectively (odds ratio 11.0). Other markers assessed added little to prediction of outcome. In the case of molecular assays, sensitivity and reliability were compromised by the age of the tissue specimens and the variability of fixation protocols. In selecting patients for adjuvant systemic chemotherapy, the proposed index improves considerably on current international guidelines and matches the performance reported for 'gene-expression signature' analysis. (C) 2004 Cancer Research UK.</p
Genetic variation at CYP3A is associated with age at menarche and breast cancer risk : a case-control study
Abstract
Introduction
We have previously shown that a tag single nucleotide polymorphism (rs10235235), which maps to the CYP3A locus (7q22.1), was associated with a reduction in premenopausal urinary estrone glucuronide levels and a modest reduction in risk of breast cancer in women age ≤50 years.
Methods
We further investigated the association of rs10235235 with breast cancer risk in a large case control study of 47,346 cases and 47,570 controls from 52 studies participating in the Breast Cancer Association Consortium. Genotyping of rs10235235 was conducted using a custom Illumina Infinium array. Stratified analyses were conducted to determine whether this association was modified by age at diagnosis, ethnicity, age at menarche or tumor characteristics.
Results
We confirmed the association of rs10235235 with breast cancer risk for women of European ancestry but found no evidence that this association differed with age at diagnosis. Heterozygote and homozygote odds ratios (ORs) were OR = 0.98 (95% CI 0.94, 1.01; P = 0.2) and OR = 0.80 (95% CI 0.69, 0.93; P = 0.004), respectively (P
trend = 0.02). There was no evidence of effect modification by tumor characteristics. rs10235235 was, however, associated with age at menarche in controls (P
trend = 0.005) but not cases (P
trend = 0.97). Consequently the association between rs10235235 and breast cancer risk differed according to age at menarche (P
het = 0.02); the rare allele of rs10235235 was associated with a reduction in breast cancer risk for women who had their menarche age ≥15 years (ORhet = 0.84, 95% CI 0.75, 0.94; ORhom = 0.81, 95% CI 0.51, 1.30; P
trend = 0.002) but not for those who had their menarche age ≤11 years (ORhet = 1.06, 95% CI 0.95, 1.19, ORhom = 1.07, 95% CI 0.67, 1.72; P
trend = 0.29).
Conclusions
To our knowledge rs10235235 is the first single nucleotide polymorphism to be associated with both breast cancer risk and age at menarche consistent with the well-documented association between later age at menarche and a reduction in breast cancer risk. These associations are likely mediated via an effect on circulating hormone levels
Identification of a BRCA2-specific modifier locus at 6p24 related to breast cancer risk.
Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those
known to date have all been found through population-based genome-wide association studies (GWAS). To
comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication
of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed
genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a
total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330
unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2
were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these
BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have
stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that
was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80–0.90,
P = 3.961028). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation
carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts
with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation
background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to
the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical
utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer
Identification of cryptic sites of DNA sequence amplification in human breast cancer by chromosome microdissection
We have performed microdissection of 16 putative homogeneously staining regions (hsrs) from nine different breast cancer cell lines in order to determine their chromosomal origin and composition. As expected, the most commonly amplified chromosomal band-region was 17q12 (containing ERBB2). However, regions not containing known oncogenes were also identified, including 13q31 (5/9 cases) and 20q12-13.2 (4/9 cases). The chromosomal composition of the integrated amplified DNA within each hsr was determined and in 13/16 cases (81%), hsrs were shown to be composed of two or more chromosomal regions. These studies shed light on the mechanism of formation of hsrs, and identify chromosomal regions likely to harbour genes amplified in breast cancer.link_to_subscribed_fulltex
Identification of cryptic sites of DNA sequence amplification in human breast cancer by chromosome microdissection
Genetic predisposition to in situ and invasive lobular carcinoma of the breast
Invasive lobular breast cancer (ILC) accounts for 10-15% of all invasive breast carcinomas. It is generally ER positive (ER+) and often associated with lobular carcinoma in situ (LCIS). Genome-wide association studies have identified more than 70 common polymorphisms that predispose to breast cancer, but these studies included predominantly ductal (IDC) carcinomas. To identify novel common polymorphisms that predispose to ILC and LCIS, we pooled data from 6,023 cases (5,622 ILC, 401 pure LCIS) and 34,271 controls from 36 studies genotyped using the iCOGS chip. Six novel SNPs most strongly associated with ILC/LCIS in the pooled analysis were genotyped in a further 516 lobular cases (482 ILC, 36 LCIS) and 1,467 controls. These analyses identified a lobular-specific SNP at 7q34 (rs11977670, OR (95%CI) for ILC = 1.13 (1.09-1.18), P = 6.0 × 10(-10); P-het for ILC vs IDC ER+ tumors = 1.8 × 10(-4)). Of the 75 known breast cancer polymorphisms that were genotyped, 56 were associated with ILC and 15 with LCIS at P<0.05. Two SNPs showed significantly stronger associations for ILC than LCIS (rs2981579/10q26/FGFR2, P-het = 0.04 and rs889312/5q11/MAP3K1, P-het = 0.03); and two showed stronger associations for LCIS than ILC (rs6678914/1q32/LGR6, P-het = 0.001 and rs1752911/6q14, P-het = 0.04). In addition, seven of the 75 known loci showed significant differences between ER+ tumors with IDC and ILC histology, three of these showing stronger associations for ILC (rs11249433/1p11, rs2981579/10q26/FGFR2 and rs10995190/10q21/ZNF365) and four associated only with IDC (5p12/rs10941679; rs2588809/14q24/RAD51L1, rs6472903/8q21 and rs1550623/2q31/CDCA7). In conclusion, we have identified one novel lobular breast cancer specific predisposition polymorphism at 7q34, and shown for the first time that common breast cancer polymorphisms predispose to LCIS. We have shown that many of the ER+ breast cancer predisposition loci also predispose to ILC, although there is some heterogeneity between ER+ lobular and ER+ IDC tumors. These data provide evidence for overlapping, but distinct etiological pathways within ER+ breast cancer between morphological subtypes
Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk
Molecular tumour pathology - and tumour genetic
