3,355 research outputs found

    Daphnias: from the individual based model to the large population equation

    Get PDF
    The class of deterministic 'Daphnia' models treated by Diekmann et al. (J Math Biol 61: 277-318, 2010) has a long history going back to Nisbet and Gurney (Theor Pop Biol 23: 114-135, 1983) and Diekmann et al. (Nieuw Archief voor Wiskunde 4: 82-109, 1984). In this note, we formulate the individual based models (IBM) supposedly underlying those deterministic models. The models treat the interaction between a general size-structured consumer population ('Daphnia') and an unstructured resource ('algae'). The discrete, size and age-structured Daphnia population changes through births and deaths of its individuals and throught their aging and growth. The birth and death rates depend on the sizes of the individuals and on the concentration of the algae. The latter is supposed to be a continuous variable with a deterministic dynamics that depends on the Daphnia population. In this model setting we prove that when the Daphnia population is large, the stochastic differential equation describing the IBM can be approximated by the delay equation featured in (Diekmann et al., l.c.)

    Numerical equilibrium analysis for structured consumer resource models

    Get PDF
    In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries can be defined in the (two-parameter) plane. We numerically trace these implicitly defined curves using alternatingly tangent prediction and Newton correction. Evaluation of the maps defining the curves involves integration over individual size and individual survival probability (and their derivatives) as functions of individual age. Such ingredients are often defined as solutions of ODE, i.e., in general only implicitly. In our case, the right-hand sides of these ODE feature discontinuities that are caused by an abrupt change of behavior at the size where juveniles are assumed to turn adult. So, we combine the numerical solution of these ODE with curve tracing methods. We have implemented the algorithms for “Daphnia consuming algae” models in C-code. The results obtained by way of this implementation are shown in the form of graphs

    Partitioning Complex Networks via Size-constrained Clustering

    Full text link
    The most commonly used method to tackle the graph partitioning problem in practice is the multilevel approach. During a coarsening phase, a multilevel graph partitioning algorithm reduces the graph size by iteratively contracting nodes and edges until the graph is small enough to be partitioned by some other algorithm. A partition of the input graph is then constructed by successively transferring the solution to the next finer graph and applying a local search algorithm to improve the current solution. In this paper, we describe a novel approach to partition graphs effectively especially if the networks have a highly irregular structure. More precisely, our algorithm provides graph coarsening by iteratively contracting size-constrained clusterings that are computed using a label propagation algorithm. The same algorithm that provides the size-constrained clusterings can also be used during uncoarsening as a fast and simple local search algorithm. Depending on the algorithm's configuration, we are able to compute partitions of very high quality outperforming all competitors, or partitions that are comparable to the best competitor in terms of quality, hMetis, while being nearly an order of magnitude faster on average. The fastest configuration partitions the largest graph available to us with 3.3 billion edges using a single machine in about ten minutes while cutting less than half of the edges than the fastest competitor, kMetis

    Semigroup analysis of structured parasite populations

    Get PDF
    Motivated by structured parasite populations in aquaculture we consider a class of size-structured population models, where individuals may be recruited into the population with distributed states at birth. The mathematical model which describes the evolution of such a population is a first-order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then, we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In the case of a separable fertility function, we deduce a characteristic equation, and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.Comment: to appear in Mathematical Modelling of Natural Phenomen

    Variability of Contact Process in Complex Networks

    Full text link
    We study numerically how the structures of distinct networks influence the epidemic dynamics in contact process. We first find that the variability difference between homogeneous and heterogeneous networks is very narrow, although the heterogeneous structures can induce the lighter prevalence. Contrary to non-community networks, strong community structures can cause the secondary outbreak of prevalence and two peaks of variability appeared. Especially in the local community, the extraordinarily large variability in early stage of the outbreak makes the prediction of epidemic spreading hard. Importantly, the bridgeness plays a significant role in the predictability, meaning the further distance of the initial seed to the bridgeness, the less accurate the predictability is. Also, we investigate the effect of different disease reaction mechanisms on variability, and find that the different reaction mechanisms will result in the distinct variabilities at the end of epidemic spreading.Comment: 6 pages, 4 figure

    Epidemic variability in complex networks

    Full text link
    We study numerically the variability of the outbreak of diseases on complex networks. We use a SI model to simulate the disease spreading at short times, in homogeneous and in scale-free networks. In both cases, we study the effect of initial conditions on the epidemic's dynamics and its variability. The results display a time regime during which the prevalence exhibits a large sensitivity to noise. We also investigate the dependence of the infection time on nodes' degree and distance to the seed. In particular, we show that the infection time of hubs have large fluctuations which limit their reliability as early-detection stations. Finally, we discuss the effect of the multiplicity of shortest paths between two nodes on the infection time. Furthermore, we demonstrate that the existence of even longer paths reduces the average infection time. These different results could be of use for the design of time-dependent containment strategies

    Effects of aging and links removal on epidemic dynamics in scale-free networks

    Full text link
    We study the combined effects of aging and links removal on epidemic dynamics in the Barab\'{a}si-Albert scale-free networks. The epidemic is described by a susceptible-infected-refractory (SIR) model. The aging effect of a node introduced at time tit_{i} is described by an aging factor of the form (tti)β(t-t_{i})^{-\beta} in the probability of being connected to newly added nodes in a growing network under the preferential attachment scheme based on popularity of the existing nodes. SIR dynamics is studied in networks with a fraction 1p1-p of the links removed. Extensive numerical simulations reveal that there exists a threshold pcp_{c} such that for ppcp \geq p_{c}, epidemic breaks out in the network. For p<pcp < p_{c}, only a local spread results. The dependence of pcp_{c} on β\beta is studied in detail. The function pc(β)p_{c}(\beta) separates the space formed by β\beta and pp into regions corresponding to local and global spreads, respectively.Comment: 8 pages, 3 figures, revtex, corrected Ref.[11

    The role of clustering and gridlike ordering in epidemic spreading

    Full text link
    The spreading of an epidemic is determined by the connectiviy patterns which underlie the population. While it has been noted that a virus spreads more easily on a network in which global distances are small, it remains a great challenge to find approaches that unravel the precise role of local interconnectedness. Such topological properties enter very naturally in the framework of our two-timestep description, also providing a novel approach to tract a probabilistic system. The method is elaborated for SIS-type epidemic processes, leading to a quantitative interpretation of the role of loops up to length 4 in the onset of an epidemic.Comment: Submitted to Phys. Rev. E; 15 pages, 11 figures, 5 table
    corecore