3,806 research outputs found

    (Broken) Gauge Symmetries and Constraints in Regge Calculus

    Full text link
    We will examine the issue of diffeomorphism symmetry in simplicial models of (quantum) gravity, in particular for Regge calculus. We find that for a solution with curvature there do not exist exact gauge symmetries on the discrete level. Furthermore we derive a canonical formulation that exactly matches the dynamics and hence symmetries of the covariant picture. In this canonical formulation broken symmetries lead to the replacements of constraints by so--called pseudo constraints. These considerations should be taken into account in attempts to connect spin foam models, based on the Regge action, with canonical loop quantum gravity, which aims at implementing proper constraints. We will argue that the long standing problem of finding a consistent constraint algebra for discretized gravity theories is equivalent to the problem of finding an action with exact diffeomorphism symmetries. Finally we will analyze different limits in which the pseudo constraints might turn into proper constraints. This could be helpful to infer alternative discretization schemes in which the symmetries are not broken.Comment: 32 pages, 15 figure

    From covariant to canonical formulations of discrete gravity

    Full text link
    Starting from an action for discretized gravity we derive a canonical formalism that exactly reproduces the dynamics and (broken) symmetries of the covariant formalism. For linearized Regge calculus on a flat background -- which exhibits exact gauge symmetries -- we derive local and first class constraints for arbitrary triangulated Cauchy surfaces. These constraints have a clear geometric interpretation and are a first step towards obtaining anomaly--free constraint algebras for canonical lattice gravity. Taking higher order dynamics into account the symmetries of the action are broken. This results in consistency conditions on the background gauge parameters arising from the lowest non--linear equations of motion. In the canonical framework the constraints to quadratic order turn out to depend on the background gauge parameters and are therefore pseudo constraints. These considerations are important for connecting path integral and canonical quantizations of gravity, in particular if one attempts a perturbative expansion.Comment: 37 pages, 5 figures (minor modifications, matches published version + updated references

    Spin foam models with finite groups

    Full text link
    Spin foam models, loop quantum gravity and group field theory are discussed as quantum gravity candidate theories and usually involve a continuous Lie group. We advocate here to consider quantum gravity inspired models with finite groups, firstly as a test bed for the full theory and secondly as a class of new lattice theories possibly featuring an analogue diffeomorphism symmetry. To make these notes accessible to readers outside the quantum gravity community we provide an introduction to some essential concepts in the loop quantum gravity, spin foam and group field theory approach and point out the many connections to lattice field theory and condensed matter systems.Comment: 47 pages, 6 figure

    Curved planar quantum wires with Dirichlet and Neumann boundary conditions

    Full text link
    We investigate the discrete spectrum of the Hamiltonian describing a quantum particle living in the two-dimensional curved strip. We impose the Dirichlet and Neumann boundary conditions on opposite sides of the strip. The existence of the discrete eigenvalue below the essential spectrum threshold depends on the sign of the total bending angle for the asymptotically straight strips.Comment: 7 page

    From the discrete to the continuous - towards a cylindrically consistent dynamics

    Full text link
    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.Comment: 22 page

    Classical GR as a topological theory with linear constraints

    Full text link
    We investigate a formulation of continuum 4d gravity in terms of a constrained topological (BF) theory, in the spirit of the Plebanski formulation, but involving only linear constraints, of the type used recently in the spin foam approach to quantum gravity. We identify both the continuum version of the linear simplicity constraints used in the quantum discrete context and a linear version of the quadratic volume constraints that are necessary to complete the reduction from the topological theory to gravity. We illustrate and discuss also the discrete counterpart of the same continuum linear constraints. Moreover, we show under which additional conditions the discrete volume constraints follow from the simplicity constraints, thus playing the role of secondary constraints. Our analysis clarifies how the discrete constructions of spin foam models are related to a continuum theory with an action principle that is equivalent to general relativity.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010 (ERE2010, Granada, Spain

    Classical GR as a topological theory with linear constraints

    Full text link
    We investigate a formulation of continuum 4d gravity in terms of a constrained topological (BF) theory, in the spirit of the Plebanski formulation, but involving only linear constraints, of the type used recently in the spin foam approach to quantum gravity. We identify both the continuum version of the linear simplicity constraints used in the quantum discrete context and a linear version of the quadratic volume constraints that are necessary to complete the reduction from the topological theory to gravity. We illustrate and discuss also the discrete counterpart of the same continuum linear constraints. Moreover, we show under which additional conditions the discrete volume constraints follow from the simplicity constraints, thus playing the role of secondary constraints. Our analysis clarifies how the discrete constructions of spin foam models are related to a continuum theory with an action principle that is equivalent to general relativity.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010 (ERE2010, Granada, Spain

    Chaotic quantum ratchets and filters with cold atoms in optical lattices: properties of Floquet states

    Get PDF
    Recently, cesium atoms in optical lattices subjected to cycles of unequally-spaced pulses have been found to show interesting behavior: they represent the first experimental demonstration of a Hamiltonian ratchet mechanism, and they show strong variability of the Dynamical Localization lengths as a function of initial momentum. The behavior differs qualitatively from corresponding atomic systems pulsed with equal periods, which are a textbook implementation of a well-studied quantum chaos paradigm, the quantum delta-kicked particle (delta-QKP). We investigate here the properties of the corresponding eigenstates (Floquet states) in the parameter regime of the new experiments and compare them with those of the eigenstates of the delta-QKP at similar kicking strengths. We show that, with the properties of the Floquet states, we can shed light on the form of the observed ratchet current as well as variations in the Dynamical Localization length.Comment: 9 pages, 9 figure
    corecore