7,619 research outputs found
Ionospheric E-region Irregularities Produced by Non-linear Coupling of Unstable Plasma Waves
Ionospheric E region irregularities produced by nonlinear coupling of unstable plasma wave
A Stereochemical Test of a Proposed Structural Feature of the Nicotinic Acetylcholine Receptor
Understanding the gating mechanism of the nicotinic acetylcholine receptor (nAChR) and similar channels constitutes a significant challenge in chemical neurobiology. In the present work, we use a stereochemical probe to evaluate a proposed pin-into-hydrophobic socket mechanism for the αVal46 side chain of the nAChR. Utilizing nonsense suppression methodology we incorporated isoleucine (Ile), O-methyl threonine (Omt) and threonine (Thr) as well as their side chain epimers (the allo counterparts). Surprisingly, our results indicate that only the pro-S methyl group of the αVal46 side chain is sensitive to changes in hydrophobicity, consistent with the precise geometrical requirements of the pin-into-socket mechanism
WR146 - observing the OB-type companion
We present new radio and optical observations of the colliding-wind system
WR146 aimed at understanding the nature of the companion to the Wolf-Rayet star
and the collision of their winds. The radio observations reveal emission from
three components: the WR stellar wind, the non-thermal wind-wind interaction
region and, for the first time, the stellar wind of the OB companion. This
provides the unique possibility of determining the mass-loss rate and terminal
wind velocity ratios of the two winds, independent of distance. Respectively,
these ratios are determined to be 0.20+/-0.06 and 0.56+/-0.17 for the
OB-companion star relative to the WR star. A new optical spectrum indicates
that the system is more luminous than had been believed previously. We deduce
that the ``companion'' cannot be a single, low luminosity O8 star as previously
suggested, but is either a high luminosity O8 star, or possibly an O8+WC binary
system.Comment: 9 pages, 5 figures,
ftp://fto.drao.nrc.ca/pub/smd/wr146/accepted.ps.gz To be published in Monthly
Notices of the Royal Astronomical Societ
High resolution radio observations of the colliding-wind binary WR140
Milli-arcsecond resolution Very Long Baseline Array (VLBA) observations of
the archetype WR+O star colliding-wind binary (CWB) system WR140 are presented
for 23 epochs between orbital phases 0.74 and 0.97. At 8.4 GHz, the emission in
the wind-collision region (WCR) is clearly resolved as a bow-shaped arc that
rotates as the orbit progresses. We interpret this rotation as due to the O
star moving from SE to approximately E of the WR star, which leads to solutions
for the orbit inclination of 122+/-5 deg, the longitude of the ascending node
of 353+/-3 deg, and an orbit semi-major axis of 9.0+/-0.5 mas. The distance to
WR140 is determined to be 1.85+/-0.16 kpc, which requires the O star to be a
supergiant. The inclination implies the mass of the WR and O star to be 20+/-4
and 54+/-10 solar masses respectively. We determine a wind-momentum ratio of
0.22, with an expected half-opening angle for the WCR of 63 deg, consistent
with 65+/-10 deg derived from the VLBA observations. Total flux measurements
from Very Large Array (VLA) observations show the radio emission from WR140 is
very closely the same from one orbit to the next, pointing strongly toward
emission, absorption and cooling mechanism(s) that are controlled largely by
the orbital motion. The synchrotron spectra evolve dramatically through the
orbital phases observed, exhibiting both optically thin and optically thick
emission. We discuss a number of absorption and cooling mechanisms that may
determine the evolution of the synchrotron spectrum with orbital phase.Comment: Accepted by ApJ, to appear in v623, April 20, 2005. 14 pages, 13
figs, requires emulateapj.cls. A version with full resolution figs can be
obtained from http://www.drao.nrc.ca/~smd/preprint/wr140_data.pd
Expression and Circular Dichroism Studies of the Extracellular Domain of the alpha Subunit of the Nicotinic Acetylcholine Receptor
To provide material suitable for structural studies of the nicotinic acetylcholine receptor, we have expressed and purified the NH2-terminal extracellular domain of the mouse muscle alpha subunit. Several constructs were initially investigated using Xenopus oocytes as a convenient small scale expression system. A fusion protein (alpha210GPI) consisting of the 210 NH2-terminal amino acids of the alpha subunit and a glycosylphosphatidylinositol anchorage sequence conferred surface alpha-bungarotoxin binding in oocytes. Coexpression of alpha210GPI with an analogous construct made from the delta subunit showed no evidence of heterodimer formation. The alpha210GPI protein was chosen for large scale expression in transfected Chinese hamster ovary cells. The alpha210GPI protein was cleaved from these cells and purified on an immunoaffinity column. Gel and column chromatography show that the purified protein is processed as expected and exists as a monomer. The purified protein also retains the two distinct, conformation-specific binding sites expected for the correctly folded alpha subunit. Circular dichroism studies of alpha210GPI suggest that this region of the receptor includes considerable beta-sheet secondary structure, with a small proportion of alpha-helix
Cation-pi interactions in aromatics of biological and medicinal interest: Electrostatic potential surfaces as a useful qualitative guide
The cation-pi interaction is an important, general force for molecular recognition in biological receptors. Through the sidechains of aromatic amino acids, novel binding sites for cationic ligands such as acetylcholine can be constructed. We report here a number of calculations on prototypical cation-pi systems, emphasizing structures of relevance to biological receptors and prototypical heterocycles of the type often of importance in medicinal chemistry. Trends in the data can be rationalized using a relatively simple model that emphasizes the electrostatic component of the cation-pi interaction. In particular, plots of the electrostatic potential surfaces of the relevant aromatics provide useful guidelines for predicting cation-pi interactions in new systems
A General Strategy for Visible-Light Decaging Based on the Quinone Trimethyl Lock
Visible-light triggered quinone trimethyl locks are reported as a general design for long-wavelength photoremovable protecting groups for alcohols and amines. Intramolecular photoreduction unmasks a reactive phenol that undergoes fast lactonization to release alcohols and amines. Model substrates are released in quantitative yield along with well-defined, colorless hydroquinone byproducts. Substituent modifications of the quinone core allow absorption from 400 to 600 nm
- …
