1,225 research outputs found
Low Reynolds number hydrodynamics of asymmetric, oscillating dumbbell pairs
Active dumbbell suspensions constitute one of the simplest model system for
collective swimming at low Reynolds number. Generalizing recent work, we derive
and analyze stroke-averaged equations of motion that capture the effective
hydrodynamic far-field interaction between two oscillating, asymmetric
dumbbells in three space dimensions. Time-averaged equations of motion, as
those presented in this paper, not only yield a considerable speed-up in
numerical simulations, they may also serve as a starting point when deriving
continuum equations for the macroscopic dynamics of multi-swimmer suspensions.
The specific model discussed here appears to be particularly useful in this
context, since it allows one to investigate how the collective macroscopic
behavior is affected by changes in the microscopic symmetry of individual
swimmers.Comment: 10 pages, to appear in EPJ Special Topic
Stationarity, soft ergodicity, and entropy in relativistic systems
Recent molecular dynamics simulations show that a dilute relativistic gas
equilibrates to a Juettner velocity distribution if ensemble velocities are
measured simultaneously in the observer frame. The analysis of relativistic
Brownian motion processes, on the other hand, implies that stationary
one-particle distributions can differ depending on the underlying
time-parameterizations. Using molecular dynamics simulations, we demonstrate
how this relativistic phenomenon can be understood within a deterministic model
system. We show that, depending on the time-parameterization, one can
distinguish different types of soft ergodicity on the level of the one-particle
distributions. Our analysis further reveals a close connection between time
parameters and entropy in special relativity. A combination of different
time-parameterizations can potentially be useful in simulations that combine
molecular dynamics algorithms with randomized particle creation, annihilation,
or decay processes.Comment: 4 page
A System for Series Magnetic Measurements of the LHC Main Quadrupoles
More than 400 twin aperture lattice quadrupoles are needed for the Large Hadron Collider (LHC) which is under construction at CERN. The main quadrupole is assembled with correction magnets in a common cryostat called the Short Straight Section (SSS). We plan to measure all SSS's in cold conditions with an unprecedented accuracy: integrated gradient of the field within 150 ppm, harmonics in a range of 1 to 5 ppm, magnetic axis of all elements within 0.1 mm and their field direction within 0.2 mrad. In this paper we describe the automatic measurement system that we have designed, built and calibrated. Based on the results obtained on the two first prototypes of the SSS's (SSS3 and SSS4) we show that this system meets all above requirements
Establishing the substantive interpretation of the GFP by considering evidence from research on personality disorders and Animal Personality
In research on individual differences, various structural models aim at providing a comprehensive description of personality. These models assume multiple, mostly independent personality dimensions. More recently, the so-called General Factor of Personality (GFP) has become a proliferous, but contentious, topic. The notion of the GFP is based on the observations that personality dimensions are not independent, but in fact show consistent inter-correlations, leading to a relevant proportion of shared variance among them (Figueredo et al., 2006). The GFP seems to capture the socially desirable ends of personality scales, and, in terms of the Big Five model, high-GFP individuals score relatively high on openness, conscientiousness, extraversion (mainly the sociability-facet), agreeableness, and emotional stability (Rushton and Irwing, 2009; van der Linden et al., 2010a). Some authors have suggested that the GFP simply reflects methodological artifacts (Ashton et al., 2009; Backstrom et al., 2009; Hopwood et al., 2011b; Pettersson et al., 2012). However, much of this criticism has been addressed (Rushton and Erdle, 2010; Loehlin, 2012; Dunkel and van der Linden, 2014; van der Linden et al., 2014a). The objective of the present work is not to reiterate these issues, as they have been discussed extensively elsewhere (Irwing, 2013; van der Linden et al., 2016). Instead, we contend that criticism mostly offered within the specialty of personality psychology misses the bigger picture. More specific, evidence in favor of the GFP as a substantive and theoretically coherent construct has been provided in other research fields long before it became a contentious issue in personality psychology. Here we introduce two lines of evidence that may further corroborate the substantive interpretation of the GFP, specifically, findings from personality pathology as well as from animal personality. Looking at the GFP from a different perspective may help to overcome the current debates within personality psychology. In the following we will first briefly introduce work on the GFP and its theoretical foundation as social effectiveness. Afterwards we outline research from psychiatric nosology and animal ecology and discuss these in context
First order and stable relativistic dissipative hydrodynamics
Relativistic thermodynamics is derived from kinetic equilibrium in a general
frame. Based on a novel interpretation of Lagrange multipliers in the
equilibrium state we obtain a generic stable but first order relativistic
dissipative hydrodynamics. Although this was believed to be impossible, we
circumvent this difficulty by a specific handling of the heat flow.Comment: revised, 11 pages, accepted for publication in PL
Non-analytic microscopic phase transitions and temperature oscillations in the microcanonical ensemble: An exactly solvable 1d-model for evaporation
We calculate exactly both the microcanonical and canonical thermodynamic
functions (TDFs) for a one-dimensional model system with piecewise constant
Lennard-Jones type pair interactions. In the case of an isolated -particle
system, the microcanonical TDFs exhibit (N-1) singular (non-analytic)
microscopic phase transitions of the formal order N/2, separating N
energetically different evaporation (dissociation) states. In a suitably
designed evaporation experiment, these types of phase transitions should
manifest themselves in the form of pressure and temperature oscillations,
indicating cooling by evaporation. In the presence of a heat bath (thermostat),
such oscillations are absent, but the canonical heat capacity shows a
characteristic peak, indicating the temperature-induced dissociation of the
one-dimensional chain. The distribution of complex zeros (DOZ) of the canonical
partition may be used to identify different degrees of dissociation in the
canonical ensemble.Comment: version accepted for publication in PRE, minor additions in the text,
references adde
Formation of the planet around the millisecond pulsar J1719-1438
Context. Recently the discovery of PSR J1719-1438, a 5.8 ms pulsar with a
companion in a 2.2 hr orbit, was reported. The combination of this orbital
period and the very low mass function is unique. The discoverers, Bailes et
al., proposed an ultracompact X-ray binary (UCXB) as the progenitor system.
However, the standard UCXB scenario would not produce this system as the time
required to reach this orbital period exceeds the current estimate of the age
of the Universe. The detached state of the system aggravates the problem. Aims.
We want to understand the evolutionary history of PSR J1719-1438, and determine
under which circumstances it could have evolved from an UCXB. Methods. We model
UCXB evolution varying the donor size and investigate the effect of a wind mass
loss from the donor, and compare the results with the observed characteristics
of PSR J1719-1438. Results. An UCXB can reach a 2.2 hr orbit within the age of
the Universe, provided that 1) the millisecond pulsar can significantly heat
and expand the donor by pulsar irradiation, or 2) the system loses extra
orbital angular momentum, e.g. via a fast wind from the donor. Conclusions. The
most likely scenario for the formation of PSR J1719-1438 is UCXB evolution
driven by angular momentum loss via the usual gravitational wave emission,
which is enhanced by angular momentum loss via a donor wind of ~3x10^-13
Msun/yr. Depending on the size of the donor during the evolution, the companion
presently probably has a mass of ~1-3 Jupiter masses, making it a very low mass
white dwarf as proposed by Bailes et al. Its composition can be either helium
or carbon-oxygen. A helium white dwarf companion makes the long (for an UCXB)
orbital period easier to explain, but the required inclination makes it a
priori less likely than a carbon-oxygen white dwarf.Comment: 5 pages, 4 figures. Accepted for publication in Astronomy and
Astrophysics. v2: Updated a referenc
Resource Competition on Integral Polymatroids
We study competitive resource allocation problems in which players distribute
their demands integrally on a set of resources subject to player-specific
submodular capacity constraints. Each player has to pay for each unit of demand
a cost that is a nondecreasing and convex function of the total allocation of
that resource. This general model of resource allocation generalizes both
singleton congestion games with integer-splittable demands and matroid
congestion games with player-specific costs. As our main result, we show that
in such general resource allocation problems a pure Nash equilibrium is
guaranteed to exist by giving a pseudo-polynomial algorithm computing a pure
Nash equilibrium.Comment: 17 page
Relative entropy, Haar measures and relativistic canonical velocity distributions
The thermodynamic maximum principle for the Boltzmann-Gibbs-Shannon (BGS)
entropy is reconsidered by combining elements from group and measure theory.
Our analysis starts by noting that the BGS entropy is a special case of
relative entropy. The latter characterizes probability distributions with
respect to a pre-specified reference measure. To identify the canonical BGS
entropy with a relative entropy is appealing for two reasons: (i) the maximum
entropy principle assumes a coordinate invariant form; (ii) thermodynamic
equilibrium distributions, which are obtained as solutions of the maximum
entropy problem, may be characterized in terms of the transformation properties
of the underlying reference measure (e.g., invariance under group
transformations). As examples, we analyze two frequently considered candidates
for the one-particle equilibrium velocity distribution of an ideal gas of
relativistic particles. It becomes evident that the standard J\"uttner
distribution is related to the (additive) translation group on momentum space.
Alternatively, imposing Lorentz invariance of the reference measure leads to a
so-called modified J\"uttner function, which differs from the standard
J\"uttner distribution by a prefactor, proportional to the inverse particle
energy.Comment: 15 pages: extended version, references adde
The Simple Non-degenerate Relativistic Gas: Statistical Properties and Brownian Motion
This paper shows a novel calculation of the mean square displacement of a
classical Brownian particle in a relativistic thermal bath. The result is
compared with the expressions obtained by other authors. Also, the
thermodynamic properties of a non-degenerate simple relativistic gas are
reviewed in terms of a treatment performed in velocity space.Comment: 6 pages, 2 figure
- …
