926 research outputs found
Probabilistic forecasting of shallow, rainfall-triggered landslides using real-time numerical weather predictions
A project established at the National Institute of Water and Atmospheric Research (NIWA) in New Zealand is aimed at developing a prototype of a real-time landslide forecasting system. The objective is to predict temporal changes in landslide probability for shallow, rainfall-triggered landslides, based on quantitative weather forecasts from numerical weather prediction models. Global weather forecasts from the United Kingdom Met Office (MO) Numerical Weather Prediction model (NWP) are coupled with a regional data assimilating NWP model (New Zealand Limited Area Model, NZLAM) to forecast atmospheric variables such as precipitation and temperature up to 48 h ahead for all of New Zealand. The weather forecasts are fed into a hydrologic model to predict development of soil moisture and groundwater levels. The forecasted catchment-scale patterns in soil moisture and soil saturation are then downscaled using topographic indices to predict soil moisture status at the local scale, and an infinite slope stability model is applied to determine the triggering soil water threshold at a local scale. The model uses uncertainty of soil parameters to produce probabilistic forecasts of spatio-temporal landslide occurrence 48~h ahead. The system was evaluated for a damaging landslide event in New Zealand. Comparison with landslide densities estimated from satellite imagery resulted in hit rates of 70–90%
Reduction of oscillations in a GaN bridge leg using active gate driving with sub-ns resolution, arbitrary gate-impedance patterns
Titan's lakes chemical composition: sources of uncertainties and variability
Between 2004 and 2007 the instruments of the CASSINI spacecraft discovered
hydrocarbon lakes in the polar regions of Titan. We have developed a
lake-atmosphere equilibrium model allowing the determination of the chemical
composition of these liquid areas. The model is based on uncertain
thermodynamic data and precipitation rates of organic species predicted to be
present in the lakes and seas that are subject to spatial and temporal
variations. Here we explore and discuss the influence of these uncertainties
and variations. The errors and uncertainties relevant to thermodynamic data are
simulated via Monte-Carlo simulations. Global Circulation Models (GCM) are also
employed in order to investigate the possibility of chemical asymmetry between
the south and the north poles, due to differences in precipitation rates. We
find that mole fractions of compounds in the liquid phase have a high
sensitivity to thermodynamic data used as inputs, in particular molar volumes
and enthalpies of vaporization. When we combine all considered uncertainties,
the ranges of obtained mole fractions are rather large (up to ~8500%) but the
distributions of values are narrow. The relative standard deviations remain
between 10% and ~300% depending on the compound considered. Compared to other
sources of uncertainties and variability, deviation caused by surface pressure
variations are clearly negligible, remaining of the order of a few percent up
to ~20%. Moreover no significant difference is found between the composition of
lakes located in north and south poles. Because the theory of regular solutions
employed here is sensitive to thermodynamic data and is not suitable for polar
molecules such as HCN and CH3CN, our work strongly underlines the need for
experimental simulations and the improvement of Titan's atmospheric models.Comment: Accepted in Planetary and Space Scienc
Design of 370-ps Delay Floating-Voltage Level Shifters With 30-V/ns Power Supply Slew Tolerance
A new design method for producing high-performance and power-rail slew-tolerant floating-voltage level shifters is presented, offering increased speed, reduced power consumption, and smaller layout area compared with previous designs. The method uses an energy-saving pulse-triggered input, a high-bandwidth current mirror, and a simple full latch composed of two inverters. A number of optimizations are explored in detail, resulting in a presented design with a dVdd slew immunity of 30 V/ns, and near-zero static power dissipation in a 180-nm technology. Experimental results show a delay of below 370 ps for a level-shift range of 8-20 V. Postlayout simulation puts the energy consumption at 2.6 pJ/bit at 4 V and 7.2 pJ/bit at 20 V, with near symmetric rise and fall delays
Precision neutron interferometric measurement of the nd coherent neutron scattering length and consequences for models of three-nucleon forces
We have performed the first high precision measurement of the coherent
neutron scattering length of deuterium in a pure sample using neutron
interferometry. We find b_nd = (6.665 +/- 0.004) fm in agreement with the world
average of previous measurements using different techniques, b_nd = (6.6730 +/-
0.0045) fm. We compare the new world average for the nd coherent scattering
length b_nd = (6.669 +/- 0.003) fm to calculations of the doublet and quartet
scattering lengths from several modern nucleon-nucleon potential models with
three-nucleon force (3NF) additions and show that almost all theories are in
serious disagreement with experiment. This comparison is a more stringent test
of the models than past comparisons with the less precisely-determined nuclear
doublet scattering length of a_nd = (0.65 +/- 0.04) fm.Comment: 4 pages, 4 figure
Counter Machines and Distributed Automata: A Story about Exchanging Space and Time
We prove the equivalence of two classes of counter machines and one class of
distributed automata. Our counter machines operate on finite words, which they
read from left to right while incrementing or decrementing a fixed number of
counters. The two classes differ in the extra features they offer: one allows
to copy counter values, whereas the other allows to compute copyless sums of
counters. Our distributed automata, on the other hand, operate on directed path
graphs that represent words. All nodes of a path synchronously execute the same
finite-state machine, whose state diagram must be acyclic except for
self-loops, and each node receives as input the state of its direct
predecessor. These devices form a subclass of linear-time one-way cellular
automata.Comment: 15 pages (+ 13 pages of appendices), 5 figures; To appear in the
proceedings of AUTOMATA 2018
Predicting vapor liquid equilibria using density functional theory: a case study of argon
Predicting vapor liquid equilibria (VLE) of molecules governed by weak van der Waals (vdW) interactions using the first principles approach is a significant challenge. Due to the poor scaling of the post Hartree-Fock wave function theory with system size/basis functions, the Kohn-Sham density functional theory (DFT) is preferred for systems with a large number of molecules. However, traditional DFT cannot adequately account for medium to long range correlations which are necessary for modeling vdW interactions. Recent developments in DFT such as dispersion corrected models and nonlocal van der Waals functionals have attempted to address this weakness with a varying degree of success. In this work, we predict the VLE of argon and assess the performance of several density functionals and the second order Møller-Plesset perturbation theory (MP2) by determining critical and structural properties via first principles Monte Carlo simulations. PBE-D3, BLYP-D3, and rVV10 functionals were used to compute vapor liquid coexistence curves, while PBE0-D3, M06-2X-D3, and MP2 were used for computing liquid density at a single state point. The performance of the PBE-D3 functional for VLE is superior to other functionals (BLYP-D3 and rVV10). At T = 85 K and P = 1 bar, MP2 performs well for the density and structural features of the first solvation shell in the liquid phase
Refractive Index of Humid Air in the Infrared: Model Fits
The theory of summation of electromagnetic line transitions is used to
tabulate the Taylor expansion of the refractive index of humid air over the
basic independent parameters (temperature, pressure, humidity, wavelength) in
five separate infrared regions from the H to the Q band at a fixed percentage
of Carbon Dioxide. These are least-squares fits to raw, highly resolved spectra
for a set of temperatures from 10 to 25 C, a set of pressures from 500 to 1023
hPa, and a set of relative humidities from 5 to 60%. These choices reflect the
prospective application to characterize ambient air at mountain altitudes of
astronomical telescopes.Comment: Corrected exponents of c0ref, c1ref and c1p in Table
Connection between dynamics and thermodynamics of liquids on the melting line
The dynamics of a large number of liquids and polymers exhibit scaling
properties characteristic of a simple repulsive inverse power law (IPL)
potential, most notably the superpositioning of relaxation data as a function
of the variable TV{\gamma}, where T is temperature, V the specific volume, and
{\gamma} a material constant. A related scaling law, TmVm{\Gamma}, with the
same exponent {\Gamma}={\gamma}, links the melting temperature Tm and volume Vm
of the model IPL liquid; liquid dynamics is then invariant at the melting
point. Motivated by a similar invariance of dynamics experimentally observed at
transitions of liquid crystals, we determine dynamic and melting point scaling
exponents {\gamma} and {\Gamma} for a large number of non-associating liquids.
Rigid, spherical molecules containing no polar bonds have {\Gamma}={\gamma};
consequently, the reduced relaxation time, viscosity and diffusion coefficient
are each constant along the melting line. For other liquids {\gamma}>{\Gamma}
always; i.e., the dynamics is more sensitive to volume than is the melting
point, and for these liquids the dynamics at the melting point slows down with
increasing Tm (that is, increasing pressure).Comment: 20 pages, 8 figures, 1 tabl
An Anti-Human ICAM-1 Antibody Inhibits Rhinovirus-Induced Exacerbations of Lung Inflammation
Human rhinoviruses (HRV) cause the majority of common colds and acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Effective therapies are urgently needed, but no licensed treatments or vaccines currently exist. Of the 100 identified serotypes, ∼90% bind domain 1 of human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, making this an attractive target for development of therapies; however, ICAM-1 domain 1 is also required for host defence and regulation of cell trafficking, principally via its major ligand LFA-1. Using a mouse anti-human ICAM-1 antibody (14C11) that specifically binds domain 1 of human ICAM-1, we show that 14C11 administered topically or systemically prevented entry of two major groups of rhinoviruses, HRV16 and HRV14, and reduced cellular inflammation, pro-inflammatory cytokine induction and virus load in vivo. 14C11 also reduced cellular inflammation and Th2 cytokine/chemokine production in a model of major group HRV-induced asthma exacerbation. Interestingly, 14C11 did not prevent cell adhesion via human ICAM-1/LFA-1 interactions in vitro, suggesting the epitope targeted by 14C11 was specific for viral entry. Thus a human ICAM-1 domain-1-specific antibody can prevent major group HRV entry and induction of airway inflammation in vivo
- …
