252 research outputs found
Characteristics of the dynamics of breakdown filaments in Al2O3/InGaAs stacks
In this paper, the Al2O3/InGaAs interface was studied by X-ray photoelectron spectroscopy (XPS) after a breakdown (BD) event at positive bias applied to the gate contact. The dynamics of the BD event were studied by comparable XPS measurements with different current compliance levels during the BD event. The overall results show that indium atoms from the substrate move towards the oxide by an electro-migration process and oxidize upon arrival following a power law dependence on the current compliance of the BD event. Such a result reveals the physical feature of the breakdown characteristics of III-V based metal-oxide-semiconductor devices.Fil: Palumbo, Félix Roberto Mario. Comisión Nacional de Energía Atómica; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Shekhter, P.. Technion - Israel Institute of Technology; IsraelFil: Cohen Weinfeld, K.. Technion - Israel Institute of Technology; IsraelFil: Eizenberg, M.. Technion - Israel Institute of Technology; Israe
Investigation of stress induced interface states in Al2O3/InGaAs metal-oxide-semiconductor capacitors
Implementation of high-k dielectrics on InGaAs for CMOS technology requires capabilities to predict long-time degradation and the impact of process changes on degradation processes. In this work, the degradation under constant voltage stress of metal gate/Al2O3/InGaAs stacks is studied for n-type and p-type As2 passivated InGaAs substrates. The results show that the degradation for both positive bias and negative bias did not produce Al2O3 oxide traps, while the distribution of interface states increased. In particular, the distribution of interface states, calculated by the distributed impedance equivalent circuit model, increased significantly after positive bias stress regardless of the doping type of the substrate. The injection of carriers from the semiconductor conduction band into the gate dielectric enhanced the generation of interface states but not the generation of oxide traps, suggesting that the interfacial degradation is related primarily to the InGaAs surface and not to the oxide layer.Fil: Palumbo, Félix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnologica Nacional; ArgentinaFil: Winter, R.. Technion - Israel Institute of Technology; IsraelFil: Tang, K.. University Of Stanford; Estados UnidosFil: McIntyre, P. C.. University Of Stanford; Estados UnidosFil: Eizenberg, M.. Technion - Israel Institute of Technology; Israe
Homogenization of weakly coupled systems of Hamilton--Jacobi equations with fast switching rates
We consider homogenization for weakly coupled systems of Hamilton--Jacobi
equations with fast switching rates. The fast switching rate terms force the
solutions converge to the same limit, which is a solution of the effective
equation. We discover the appearance of the initial layers, which appear
naturally when we consider the systems with different initial data and analyze
them rigorously. In particular, we obtain matched asymptotic solutions of the
systems and rate of convergence. We also investigate properties of the
effective Hamiltonian of weakly coupled systems and show some examples which do
not appear in the context of single equations.Comment: final version, to appear in Arch. Ration. Mech. Ana
Crossover phenomena in spin models with medium-range interactions and self-avoiding walks with medium-range jumps
We study crossover phenomena in a model of self-avoiding walks with
medium-range jumps, that corresponds to the limit of an -vector
spin system with medium-range interactions. In particular, we consider the
critical crossover limit that interpolates between the Gaussian and the
Wilson-Fisher fixed point. The corresponding crossover functions are computed
using field-theoretical methods and an appropriate mean-field expansion. The
critical crossover limit is accurately studied by numerical Monte Carlo
simulations, which are much more efficient for walk models than for spin
systems. Monte Carlo data are compared with the field-theoretical predictions
concerning the critical crossover functions, finding a good agreement. We also
verify the predictions for the scaling behavior of the leading nonuniversal
corrections. We determine phenomenological parametrizations that are exact in
the critical crossover limit, have the correct scaling behavior for the leading
correction, and describe the nonuniversal lscrossover behavior of our data for
any finite range.Comment: 43 pages, revte
World Spinors - Construction and Some Applications
The existence of a topological double-covering for the and
diffeomorphism groups is reviewed. These groups do not have finite-dimensional
faithful representations. An explicit construction and the classification of
all , unitary irreducible representations is presented.
Infinite-component spinorial and tensorial fields,
"manifields", are introduced. Particle content of the ladder manifields, as
given by the "little" group is determined. The manifields are
lifted to the corresponding world spinorial and tensorial manifields by making
use of generalized infinite-component frame fields. World manifields transform
w.r.t. corresponding representations, that are constructed
explicitly.Comment: 19 pages, Te
Covariant Quantization of d=4 Brink-Schwarz Superparticle with Lorentz Harmonics
Covariant first and second quantization of the free d=4 massless
superparticle are implemented with the introduction of purely gauge auxiliary
spinor Lorentz harmonics. It is shown that the general solution of the
condition of maslessness is a sum of two independent chiral superfields with
each of them corresponding to finite superspin. A translationally covariant, in
general bijective correspondence between harmonic and massless superfields is
constructed. By calculation of the commutation function it is shown that in the
considered approach only harmonic fields with correct connection between spin
and statistics and with integer negative homogeneity index satisfy the
microcausality condition. It is emphasized that harmonic fields that arise are
reducible at integer points. The index spinor technique is used to describe
infinite-component fields of finite spin; the equations of motion of such
fields are obtained, and for them Weinberg's theorem on the connection between
massless helicity particles and the type of nongauge field that describes them
is generalized.Comment: V2: 1 + 26 pages, published versio
CVD-Enabled Graphene Manufacture and Technology.
Integrated manufacturing is arguably the most challenging task in the development of technology based on graphene and other 2D materials, particularly with regard to the industrial demand for “electronic-grade” large-area films. In order to control the structure and properties of these materials at the monolayer level, their nucleation, growth and interfacing needs to be understood to a level of unprecedented detail compared to existing thin film or bulk materials. Chemical vapor deposition (CVD) has emerged as the most versatile and promising technique to develop graphene and 2D material films into industrial device materials and this Perspective outlines recent progress, trends, and emerging CVD processing pathways. A key focus is the emerging understanding of the underlying growth mechanisms, in particular on the role of the required catalytic growth substrate, which brings together the latest progress in the fields of heterogeneous catalysis and classic crystal/thin-film growth.Funding from the ERC (Grant No. 279342, InSituNANO) and EPSRC (Grant No. EP/K016636/1, GRAPHTED) is acknowledged. R.S.W. acknowledges a research fellowship from St. John’s College, Cambridge.This is the final version of the article. It first appeared from ACS via http://dx.doi.org/10.1021/acs.jpclett.5b0105
Critical Exponents, Hyperscaling and Universal Amplitude Ratios for Two- and Three-Dimensional Self-Avoiding Walks
We make a high-precision Monte Carlo study of two- and three-dimensional
self-avoiding walks (SAWs) of length up to 80000 steps, using the pivot
algorithm and the Karp-Luby algorithm. We study the critical exponents
and as well as several universal amplitude ratios; in
particular, we make an extremely sensitive test of the hyperscaling relation
. In two dimensions, we confirm the predicted
exponent and the hyperscaling relation; we estimate the universal
ratios , and (68\% confidence
limits). In three dimensions, we estimate with a
correction-to-scaling exponent (subjective 68\%
confidence limits). This value for agrees excellently with the
field-theoretic renormalization-group prediction, but there is some discrepancy
for . Earlier Monte Carlo estimates of , which were , are now seen to be biased by corrections to scaling. We estimate the
universal ratios and ; since , hyperscaling holds. The approach to
is from above, contrary to the prediction of the two-parameter
renormalization-group theory. We critically reexamine this theory, and explain
where the error lies.Comment: 87 pages including 12 figures, 1029558 bytes Postscript
(NYU-TH-94/09/01
Mapping Differentiation under Mixed Culture Conditions Reveals a Tunable Continuum of T Cell Fates
Cell differentiation is typically directed by external signals that drive opposing regulatory pathways. Studying differentiation under polarizing conditions, with only one input signal provided, is limited in its ability to resolve the logic of interactions between opposing pathways. Dissection of this logic can be facilitated by mapping the system's response to mixtures of input signals, which are expected to occur in vivo, where cells are simultaneously exposed to various signals with potentially opposing effects. Here, we systematically map the response of naïve T cells to mixtures of signals driving differentiation into the Th1 and Th2 lineages. We characterize cell state at the single cell level by measuring levels of the two lineage-specific transcription factors (T-bet and GATA3) and two lineage characteristic cytokines (IFN-γ and IL-4) that are driven by these transcription regulators. We find a continuum of mixed phenotypes in which individual cells co-express the two lineage-specific master regulators at levels that gradually depend on levels of the two input signals. Using mathematical modeling we show that such tunable mixed phenotype arises if autoregulatory positive feedback loops in the gene network regulating this process are gradual and dominant over cross-pathway inhibition. We also find that expression of the lineage-specific cytokines follows two independent stochastic processes that are biased by expression levels of the master regulators. Thus, cytokine expression is highly heterogeneous under mixed conditions, with subpopulations of cells expressing only IFN-γ, only IL-4, both cytokines, or neither. The fraction of cells in each of these subpopulations changes gradually with input conditions, reproducing the continuous internal state at the cell population level. These results suggest a differentiation scheme in which cells reflect uncertainty through a continuously tuneable mixed phenotype combined with a biased stochastic decision rather than a binary phenotype with a deterministic decision
- …
