443 research outputs found
Electron-Phonon Coupling in Highly-Screened Graphene
Photoemission studies of graphene have resulted in a long-standing
controversy concerning the strength of the experimental electron-phonon
interaction in comparison with theoretical calculations. Using high-resolution
angle-resolved photoemission spectroscopy we study graphene grown on a copper
substrate, where the metallic screening of the substrate substantially reduces
the electron-electron interaction, simplifying the comparison of the
electron-phonon interaction between theory and experiment. By taking the
nonlinear bare bandstructure into account, we are able to show that the
strength of the electron-phonon interaction does indeed agree with theoretical
calculations. In addition, we observe a significant bandgap at the Dirac point
of graphene.Comment: Submitted to Phys. Rev. Lett. on July 20, 201
Discerning Aggregation in Homogeneous Ensembles: A General Description of Photon Counting Spectroscopy in Diffusing Systems
In order to discern aggregation in solutions, we present a quantum mechanical
analog of the photon statistics from fluorescent molecules diffusing through a
focused beam. A generating functional is developed to fully describe the
experimental physical system as well as the statistics. Histograms of the
measured time delay between photon counts are fit by an analytical solution
describing the static as well as diffusing regimes. To determine empirical
fitting parameters, fluorescence correlation spectroscopy is used in parallel
to the photon counting. For expedient analysis, we find that the distribution's
deviation from a single Poisson shows a difference between two single fluor
moments or a double fluor aggregate of the same total intensities. Initial
studies were performed on fixed-state aggregates limited to dimerization.
However preliminary results on reactive species suggest that the method can be
used to characterize any aggregating system.Comment: 30 pages, 5 figure
Charge and spin distributions in GaMnAs/GaAs Ferromagnetic Multilayers
A self-consistent electronic structure calculation based on the
Luttinger-Kohn model is performed on GaMnAs/GaAs multilayers. The Diluted
Magnetic Semiconductor layers are assumed to be metallic and ferromagnetic. The
high Mn concentration (considered as 5% in our calculation) makes it possible
to assume the density of magnetic moments as a continuous distribution, when
treating the magnetic interaction between holes and the localized moment on the
Mn(++) sites. Our calculation shows the distribution of heavy holes and light
holes in the structure. A strong spin-polarization is observed, and the charge
is concentrated mostly on the GaMnAs layers, due to heavy and light holes with
their total angular momentum aligned anti-parallel to the average
magnetization. The charge and spin distributions are analyzed in terms of their
dependence on the number of multilayers, the widths of the GaMnAs and GaAs
layers, and the width of lateral GaAs layers at the borders of the structure.Comment: 12 pages,7 figure
Multi-phonon Raman scattering in semiconductor nanocrystals: importance of non-adiabatic transitions
Multi-phonon Raman scattering in semiconductor nanocrystals is treated taking
into account both adiabatic and non-adiabatic phonon-assisted optical
transitions. Because phonons of various symmetries are involved in scattering
processes, there is a considerable enhancement of intensities of multi-phonon
peaks in nanocrystal Raman spectra. Cases of strong and weak band mixing are
considered in detail. In the first case, fundamental scattering takes place via
internal electron-hole states and is participated by s- and d-phonons, while in
the second case, when the intensity of the one-phonon Raman peak is strongly
influenced by the interaction of an electron and of a hole with interface
imperfections (e. g., with trapped charge), p-phonons are most active.
Calculations of Raman scattering spectra for CdSe and PbS nanocrystals give a
good quantitative agreement with recent experimental results.Comment: 16 pages, 2 figures, E-mail addresses: [email protected],
[email protected], [email protected], accepted for publication in
Physical Review
Quantum dots and spin qubits in graphene
This is a review on graphene quantum dots and their use as a host for spin
qubits. We discuss the advantages but also the challenges to use graphene
quantum dots for spin qubits as compared to the more standard materials like
GaAs. We start with an overview of this young and fascinating field and will
then discuss gate-tunable quantum dots in detail. We calculate the bound states
for three different quantum dot architectures where a bulk gap allows for
confinement via electrostatic fields: (i) graphene nanoribbons with armchair
boundary, (ii) a disc in single-layer graphene, and (iii) a disc in bilayer
graphene. In order for graphene quantum dots to be useful in the context of
spin qubits, one needs to find reliable ways to break the valley-degeneracy.
This is achieved here, either by a specific termination of graphene in (i) or
in (ii) and (iii) by a magnetic field, without the need of a specific boundary.
We further discuss how to manipulate spin in these quantum dots and explain the
mechanism of spin decoherence and relaxation caused by spin-orbit interaction
in combination with electron-phonon coupling, and by hyperfine interaction with
the nuclear spin system.Comment: 23 pages, 10 figures, topical review prepared for Nanotechnolog
Generalized Painleve-Gullstrand descriptions of Kerr-Newman black holes
Generalized Painleve-Gullstrand metrics are explicitly constructed for the
Kerr-Newman family of charged rotating black holes. These descriptions are free
of all coordinate singularities; moreover, unlike the Doran and other proposed
metrics, an extra tunable function is introduced to ensure all variables in the
metrics remain real for all values of the mass M, charge Q, angular momentum
aM, and cosmological constant \Lambda > - 3/(a^2). To describe fermions in
Kerr-Newman spacetimes, the stronger requirement of non-singular vierbein
one-forms at the horizon(s) is imposed and coordinate singularities are
eliminated by local Lorentz boosts. Other known vierbein fields of Kerr-Newman
black holes are analysed and discussed; and it is revealed that some of these
descriptions are actually not related by physical Lorentz transformations to
the original Kerr-Newman expression in Boyer-Lindquist coordinates - which is
the reason complex components appear (for certain ranges of the radial
coordinate) in these metrics. As an application of our constructions the
correct effective Hawking temperature for Kerr black holes is derived with the
method of Parikh and Wilczek.Comment: 5 pages; extended to include application to derivation of Hawking
radiation for Kerr black holes with Parikh-Wilczek metho
Bayesian Model Selection Applied to the Analysis of Fluorescence Correlation Spectroscopy Data of Fluorescent Proteins in Vitro and in Vivo
Fluorescence correlation spectroscopy (FCS) is a powerful technique to investigate molecular dynamics with single molecule sensitivity. In particular, in the life sciences it has found widespread application using fluorescent proteins as molecularly specific labels. However, FCS data analysis and interpretation using fluorescent proteins remains challenging due to typically low signal-to-noise ratio of FCS data and correlated noise in autocorrelated data sets. As a result, naive fitting procedures that ignore these important issues typically provide similarly good fits for multiple competing models without clear distinction of which model is preferred given the signal-to-noise ratio present in the data. Recently, we introduced a Bayesian model selection procedure to overcome this issue with FCS data analysis. The method accounts for the highly correlated noise that is present in FCS data sets and additionally penalizes model complexity to prevent over interpretation of FCS data. Here, we apply this procedure to evaluate FCS data from fluorescent proteins assayed in vitro and in vivo. Consistent with previous work, we demonstrate that model selection is strongly dependent on the signal-to-noise ratio of the measurement, namely, excitation intensity and measurement time, and is sensitive to saturation artifacts. Under fixed, low intensity excitation conditions, physical transport models can unambiguously be identified. However, at excitation intensities that are considered moderate in many studies, unwanted artifacts are introduced that result in nonphysical models to be preferred. We also determined the appropriate fitting models of a GFP tagged secreted signaling protein, Wnt3, in live zebrafish embryos, which is necessary for the investigation of Wnt3 expression and secretion in development. Bayes model selection therefore provides a robust procedure to determine appropriate transport and photophysical models for fluorescent proteins when appropriate models are provided, to help detect and eliminate experimental artifacts in solution, cells, and in living organisms.National Science Foundation (U.S.). Physics of Living Systems ProgramNational Institute of Mental Health (U.S.) (Award U01MH106011
Controlled reduction of photobleaching in DNA origami gold nanoparticle hybrids
The amount of information obtainable from a fluorescence-based measurement is limited by photobleaching: Irreversible photochemical reactions either render the molecules nonfluorescent or shift their absorption and/or emission spectra outside the working range. Photobleaching is evidenced as a decrease of fluorescence intensity with time, or in the case of single molecule measurements, as an abrupt, single-step interruption of the fluorescence emission that determines the end of the experiment. Reducing photobleaching is central for improving fluorescence (functional) imaging, single molecule tracking, and fluorescence-based biosensors and assays. In this single molecule study, we use DNA self-assembly to produce hybrid nanostructures containing individual fluorophores and gold nanoparticles at a controlled separation distance of 8.5 nm. By changing the nanoparticles? size we are able to systematically increase the mean number of photons emitted by the fluorophores before photobleaching.Fil: Pellegrotti, Jesica Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Acuña, Guillermo. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Puchkova, Anastasiya. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Holzmeister, Phil. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Gietl, Andreas. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Lalkens, Birka. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; AlemaniaFil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Tinnefeld, Philip. Technische Universität Braunschweig. Institute for Physical and Theoretical Chemistry. NanoBioSciences Group; Alemani
Stormwater harvesting for irrigation purposes: An investigation of chemical quality of water recycled in pervious pavement system
Most available water resources in the world are used for agricultural irrigation. Whilst this level of water use is expected to increase due to rising world population and land use, available water resources are expected to become limited due to climate change and uneven rainfall distribution. Recycled stormwater has the potential to be used as an alternative source of irrigation water and part of sustainable water management strategy. This paper reports on a study to investigate whether a sustainable urban drainage system (SUDS) technique, known as the pervious pavements system (PPS) has the capability to recycle water that meets irrigation water quality standard. Furthermore, the experiment provided information on the impact of hydrocarbon (which was applied to simulate oil dripping from parked vehicles onto PPS), leaching of nutrients from different layers of the PPS and effects of nutrients (applied to enhance bioremediation) on the stormwater recycling efficiency of the PPS. A weekly dose of 6.23×10-3L of lubricating oil and single dose of 17.06g of polymer coated controlled-release fertilizer granules were applied to the series of 710mm×360mm model pervious pavement structure except the controls. Rainfall intensity of 7.4mm/h was applied to the test models at the rate of 3 events per week. Analysis of the recycled water showed that PPS has the capability to recycle stormwater to a quality that meets the chemical standards for use in agricultural irrigation irrespective of the type of sub-base used. There is a potential benefit of nutrient availability in recycled water for plants, but care should be taken not to dispose of this water in natural water courses as it might result in eutrophication problems. © 2014 Elsevier Ltd
Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask
Nanoscale localization of single molecules is a crucial function in several advanced microscopy techniques, including single-molecule tracking and wide-field super-resolution imaging. Until now, a central consideration of such techniques is how to optimize the precision of molecular localization. However, as these methods continue to push towards the nanometre size scale, an increasingly important concern is the localization accuracy. In particular, single fluorescent molecules emit with an anisotropic radiation pattern of an oscillating electric dipole, which can cause significant localization biases using common estimators. Here we present the theory and experimental demonstration of a solution to this problem based on azimuthal filtering in the Fourier plane of the microscope. We do so using a high-efficiency dielectric metasurface polarization/phase device composed of nanoposts with subwavelength spacing. The method is demonstrated both on fluorophores embedded in a polymer matrix and in dL5 protein complexes that bind malachite green
- …
