234 research outputs found

    Comparison of methods for estimating continuous distributions of relaxation times

    Get PDF
    The nonparametric estimation of the distribution of relaxation times approach is not as frequently used in the analysis of dispersed response of dielectric or conductive materials as are other immittance data analysis methods based on parametric curve fitting techniques. Nevertheless, such distributions can yield important information about the physical processes present in measured material. In this letter, we apply two quite different numerical inversion methods to estimate the distribution of relaxation times for glassy \lila\ dielectric frequency-response data at 225 \kelvin. Both methods yield unique distributions that agree very closely with the actual exact one accurately calculated from the corrected bulk-dispersion Kohlrausch model established independently by means of parametric data fit using the corrected modulus formalism method. The obtained distributions are also greatly superior to those estimated using approximate functions equations given in the literature.Comment: 4 pages and 4 figure

    Extracting spectral density function of a binary composite without a-priori assumption

    Full text link
    The spectral representation separates the contributions of geometrical arrangement (topology) and intrinsic constituent properties in a composite. The aim of paper is to present a numerical algorithm based on the Monte Carlo integration and contrainted-least-squares methods to resolve the spectral density function for a given system. The numerical method is verified by comparing the results with those of Maxwell-Garnett effective permittivity expression. Later, it is applied to a well-studied rock-and-brine system to instruct its utility. The presented method yields significant microstructural information in improving our understanding how microstructure influences the macroscopic behaviour of composites without any intricate mathematics.Comment: 4 pages, 5 figures and 1 tabl

    Signs of low frequency dispersions in disordered binary dielectric mixtures (50-50)

    Full text link
    Dielectric relaxation in disordered dielectric mixtures are presented by emphasizing the interfacial polarization. The obtained results coincide with and cause confusion with those of the low frequency dispersion behavior. The considered systems are composed of two phases on two-dimensional square and triangular topological networks. We use the finite element method to calculate the effective dielectric permittivities of randomly generated structures. The dielectric relaxation phenomena together with the dielectric permittivity values at constant frequencies are investigated, and significant differences of the square and triangular topologies are observed. The frequency dependent properties of some of the generated structures are examined. We conclude that the topological disorder may lead to the normal or anomalous low frequency dispersion if the electrical properties of the phases are chosen properly, such that for ``slightly'' {\em reciprocal mixture}--when σ1σ2\sigma_1\gg\sigma_2, and ϵ1<ϵ2\epsilon_1<\epsilon_2--normal, and while for ``extreme'' {\em reciprocal mixture}--when σ1σ2\sigma_1\gg\sigma_2, and ϵ1ϵ2\epsilon_1\ll\epsilon_2--anomalous low frequency dispersions are obtained. Finally, comparison with experimental data indicates that one can obtain valuable information from simulations when the material properties of the constituents are not available and of importance.Comment: 13 pages, 7 figure

    Numerical calculations of effective elastic properties of two cellular structures

    Full text link
    Young's moduli of regular two-dimensional truss-like and eye-shape-like structures are simulated by using the finite element method. The structures are the idealizations of soft polymeric materials used in the electret applications. In the simulations size of the representative smallest units are varied, which changes the dimensions of the cell-walls in the structures. A power-law expression with a quadratic as the exponential term is proposed for the effective Young's moduli of the systems as a function of the solid volume fraction. The data is divided into three regions with respect to the volume fraction; low, intermediate and high concentrations. The parameters of the proposed power-law expression in each region are later represented as a function of the structural parameters, unit-cell dimensions. The presented expression can be used to predict structure/property relationship in materials with similar cellular structures. It is observed that the structures with volume fractions of solid higher than 0.15 exhibit the importance of the cell-wall thickness contribution in the elastic properties. The cell-wall thickness is the most significant factor to predict the effective Young's modulus of regular cellular structures at high volume fractions of solid. At lower concentrations of solid, eye-like structure yields lower Young's modulus than the truss-like structure with the similar anisotropy. Comparison of the numerical results with those of experimental data of poly(propylene) show good aggreement regarding the influence of cell-wall thickness on elastic properties of thin cellular films.Comment: 7 figures and 2 table

    On micro-structural effects in dielectric mixtures

    Full text link
    The paper presents numerical simulations performed on dielectric properties of two-dimensional binary composites on eleven regular space filling tessellations. First, significant contributions of different parameters, which play an important role in the electrical properties of the composite, are introduced both for designing and analyzing material mixtures. Later, influence of structural differences and intrinsic electrical properties of constituents on the composite's over all electrical properties are investigated. The structural differences are resolved by the spectral density representation approach. The numerical technique, without any {\em a-priori} assumptions, for extracting the spectral density function is also presented.Comment: 24 pages, 8 figure and 7 tables. It is submitted to IEEE Transactions on Dielectrics and Electrical Insulatio

    Variations of Infinite Derivative Modified Gravity

    Full text link
    We consider nonlocal modified Einstein gravity without matter, where nonlocal term has the form P(R)F()Q(R)P(R) F(\Box) Q(R). For this model, in this paper we give the derivation of the equations of motion in detail. This is not an easy task and presented derivation should be useful to a researcher who wants to investigate nonlocal gravity. Also, we present the second variation of the related Einstein-Hilbert modified action and basics of gravity perturbations.Comment: 22 page

    Optimization of MicroCT Imaging and Blood Vessel Diameter Quantitation of Preclinical Specimen Vasculature with Radiopaque Polymer Injection Medium

    Get PDF
    Vascular networks within a living organism are complex, multi-dimensional, and challenging to image capture. Radio-angiographic studies in live animals require a high level of infrastructure and technical investment in order to administer costly perfusion mediums whose signals metabolize and degrade relatively rapidly, diminishing within a few hours or days. Additionally, live animal specimens must not be subject to long duration scans, which can cause high levels of radiation exposure to the specimen, limiting the quality of images that can be captured. Lastly, despite technological advances in live-animal specimen imaging, it is quite difficult to minimize or prevent movement of a live animal, which can cause motion artifacts in the final data output. It is demonstrated here that through the use of postmortem perfusion protocols of radiopaque silicone polymer mediums and ex-vivo organ harvest, it is possible to acquire a high level of vascular signal in preclinical specimens through the use of micro-computed tomographic (microCT) imaging. Additionally, utilizing high-order rendering algorithms, it is possible to further derive vessel morphometrics for qualitative and quantitative analysis

    New Hybrid Properties of TiO2 Nanoparticles Surface Modified With Catecholate Type Ligands

    Get PDF
    Surface modification of nanocrystalline TiO2 particles (45 Å) with bidentate benzene derivatives (catechol, pyrogallol, and gallic acid) was found to alter optical properties of nanoparticles. The formation of the inner-sphere charge–transfer complexes results in a red shift of the semiconductor absorption compared to unmodified nanocrystallites. The binding structures were investigated by using FTIR spectroscopy. The investigated ligands have the optimal geometry for chelating surface Ti atoms, resulting in ring coordination complexes (catecholate type of binuclear bidentate binding–bridging) thus restoring in six-coordinated octahedral geometry of surface Ti atoms. From the Benesi–Hildebrand plot, the stability constants at pH 2 of the order 103 M−1 have been determined

    Dynamics of mitochondrial heteroplasmy in three families investigated via a repeatable re-sequencing study

    Get PDF
    Background: Originally believed to be a rare phenomenon, heteroplasmy - the presence of more than one mitochondrial DNA (mtDNA) variant within a cell, tissue, or individual - is emerging as an important component of eukaryotic genetic diversity. Heteroplasmies can be used as genetic markers in applications ranging from forensics to cancer diagnostics. Yet the frequency of heteroplasmic alleles may vary from generation to generation due to the bottleneck occurring during oogenesis. Therefore, to understand the alterations in allele frequencies at heteroplasmic sites, it is of critical importance to investigate the dynamics of maternal mtDNA transmission. Results: Here we sequenced, at high coverage, mtDNA from blood and buccal tissues of nine individuals from three families with a total of six maternal transmission events. Using simulations and re-sequencing of clonal DNA, we devised a set of criteria for detecting polymorphic sites in heterogeneous genetic samples that is resistant to the noise originating from massively parallel sequencing technologies. Application of these criteria to nine human mtDNA samples revealed four heteroplasmic sites. Conclusions: Our results suggest that the incidence of heteroplasmy may be lower than estimated in some other recent re-sequencing studies, and that mtDNA allelic frequencies differ significantly both between tissues of the same individual and between a mother and her offspring. We designed our study in such a way that the complete analysis described here can be repeated by anyone either at our site or directly on the Amazon Cloud. Our computational pipeline can be easily modified to accommodate other applications, such as viral re-sequencing
    corecore