1,049 research outputs found

    Origin of gamma-ray emission in the shell of Cassiopeia A

    Get PDF
    Non-thermal X-ray emission from the shell of Cassiopeia A (Cas A) has been an interesting subject of study, as it provides information about relativistic electrons and their acceleration mechanisms in the shocks. Chandra X-ray observatory revealed the detailed spectral and spatial structure of this SNR in X-rays. The spectral analysis of Chandra X-ray data of Cas A shows unequal flux levels for different regions of the shell, which can be attributed to different magnetic fields in those regions. Additionally, the GeV gamma-ray emission observed by Large Area Telescope on board Fermi Gamma Ray Space Telescope showed that the hadronic processes are dominating in Cas A, a clear signature of acceleration of protons. In this paper we aim to explain the GeV-TeV gamma-ray data in the context of both leptonic and hadronic scenario. We modeled the multi-wavelength spectrum of Cas A. We use synchrotron emission process to explain the observed non-thermal X-ray fluxes from different regions of the shell. These result in estimation of the model parameters, which are then used to explain TeV gamma-ray emission spectrum. We also use hadronic scenario to explain both GeV and TeV fluxes simultaneously. We show that a leptonic model alone cannot explain the GeV-TeV data. Therefore, we need to invoke a hadronic model to explain the observed GeV-TeV fluxes. We found that although pure hadronic model is able to explain the GeV-TeV data, a lepto-hadronic model provides the best fit to the data.Comment: Accepted in A&

    Planetary migration in evolving planetesimals discs

    Full text link
    In the current paper, we further improved the model for the migration of planets introduced in Del Popolo et al. (2001) and extended to time-dependent planetesimal accretion disks in Del Popolo and Eksi (2002). In the current study, the assumption of Del Popolo and Eksi (2002), that the surface density in planetesimals is proportional to that of gas, is released. In order to obtain the evolution of planetesimal density, we use a method developed in Stepinski and Valageas (1997) which is able to simultaneously follow the evolution of gas and solid particles for up to 10^7 yrs. Then, the disk model is coupled to migration model introduced in Del Popolo et al. (2001) in order to obtain the migration rate of the planet in the planetesimal. We find that the properties of solids known to exist in protoplanetary systems, together with reasonable density profiles for the disk, lead to a characteristic radius in the range 0.03-0.2 AU for the final semi-major axis of the giant planet.Comment: IJMP A in prin

    RXTE Studies of Long-Term X-ray Spectral Variations in 4U 1820-30

    Get PDF
    We present the results of detailed spectral studies of the ultra-compact low mass X-ray binary (LMXB) 4U 1820-30 carried out with the Rossi X-ray Timing Explorer (RXTE) during 1996-7. 4U 1820-30 is an ``atoll'' source X-ray burster (XRB) located in the globular cluster NGC 6624. It is known to have an 11 minute binary period and a ~176 day modulation in its 2--12 keV flux. Observations were made with the PCA and HEXTE instruments on RXTE at roughly one-month intervals to sample this long-term period and study flux-related spectral changes. There are clear correlations between our fitted spectral parameters and both the broad-band (2--50 keV) flux and the position in the color-color diagram, as described by the parameter S_a introduced by Mendez et al. (1999). In addition, we find a strong correlation between the position in the color-color diagram and the frequencies of the kilohertz quasi-periodic oscillations (kHz QPOs) reported by Zhang et al. (1998). This lends further support to the notion that evidence for the last stable orbit in the accretion disk of 4U 1820-30 has been observed. For a model consisting of Comptonization of cool photons by hot electrons plus an additional blackbody component, we report an abrupt change in the spectral parameters at the same accretion rate at which the kHz QPOs disappear. For a model consisting of a multicolor disk blackbody plus a cut-off power law, we find that the inner disk radius reaches a minimum at the same accretion rate at which the kHz QPO frequency saturates, as expected if the disk reaches the last stable orbit. Both models face theoretical and observational problems when interpreted physically for this system.Comment: 39 pages, 11 figures, accepted to the Astrophysical Journa

    Optical Imaging and Spectroscopic Observation of the Galactic Supernova Remnant G85.9-0.6

    Get PDF
    Optical CCD imaging with Hα\alpha and [SII] filters and spectroscopic observations of the galactic supernova remnant G85.9-0.6 have been performed for the first time. The CCD image data are taken with the 1.5m Russian-Turkish Telescope (RTT150) at TUBITAK National Observatory (TUG) and spectral data are taken with the Bok 2.3 m telescope on Kitt Peak, AZ. The images are taken with narrow-band interference filters Hα\alpha, [SII] and their continuum. [SII]/Hα\alpha ratio image is performed. The ratio obtained from [SII]/Hα\alpha is found to be \sim0.42, indicating that the remnant interacts with HII regions. G85.9-0.6 shows diffuse-shell morphology. [SII]λλ6716/6731\lambda\lambda 6716/6731 average flux ratio is calculated from the spectra, and the electron density NeN_{e} is obtained to be 395 cm3cm^{-3}. From [OIII]/Hβ\beta ratio, shock velocity has been estimated, pre-shock density of nc=14n_{c}=14 cm3cm^{-3}, explosion energy of E=9.2×1050E=9.2\times10^{50} ergs, interstellar extinction of E(BV)=0.28E(B-V)=0.28, and neutral hydrogen column density of N(HI)=1.53×1021N(HI)=1.53\times10^{21} cm2cm^{-2} are reported.Comment: 20 pages, 4 tables, 4 figures. Accepted for publication in Astrophysics & Space Scienc

    Possible evolution of dim radio quiet neutron star 1E 1207.4-5209 based on a B-decay model

    Full text link
    Dim radio-quiet neutron star (DRQNS) 1E 1207.4-5209 is one of the most heavily examined isolated neutron stars. Wide absorption lines were observed in its spectrum obtained by both XMM-Newton and Chandra X-ray satellites. These absorption lines can be interpreted as a principal frequency centered at 0.7 keV and its harmonics at 1.4, 2.1 and possibly 2.8 keV. The principal line can be formed by resonant proton cyclotron scattering leading to a magnetic field which is two orders of magnitude larger than the perpendicular component of the surface dipole magnetic field (B) found from the rotation period (P) and the time rate of change in the rotation period (\.{P}) of 1E 1207.4-5209. Besides, age of the supernova remnant (SNR) G296.5+10.0 which is physically connected to 1E 1207.4-5209 is two orders of magnitude smaller than the characteristic age (τ\tau=P/2\.{P}) of the neutron star. These huge differences between the magnetic field values and the ages can be explained based on a B-decay model. If the decay is assumed to be exponential, the characteristic decay time turns out to be several thousand years which is three orders of magnitude smaller than the characteristic decay time of radio pulsars represented in an earlier work. The lack of detection of radio emission from DRQNSs and the lack of point sources and pulsar wind nebulae in most of the observed SNRs can also be partly explained by such a very rapid exponential decay. The large difference between the characteristic decay times of DRQNSs and radio pulsars must be related to the differences in the magnetic fields, equation of states and masses of these isolated neutron stars.Comment: 13 pages, 1 figur

    Nuclear Inelastic X-Ray Scattering of FeO to 48 GPa

    Full text link
    The partial density of vibrational states has been measured for Fe in compressed FeO (w\"ustite) using nuclear resonant inelastic x-ray scattering. Substantial changes have been observed in the overall shape of the density of states close to the magnetic transiton around 20 GPa from the paramagnetic (low pressure) to the antiferromagnetic (high pressure) state. Our data indicate a substantial softening of the aggregate sound velocities far below the transition, starting between 5 and 10 GPa. This is consistent with recent radial x-ray diffraction measurements of the elastic constants in FeO. The results indicate that strong magnetoelastic coupling in FeO is the driving force behind the changes in the phonon spectrum of FeO.Comment: 4 pages, 4 figure

    Turner syndrome and associated problems in turkish children: A multicenter study

    Get PDF
    Objective: Turner syndrome (TS) is a chromosomal disorder caused by complete or partial X chromosome monosomy that manifests various clinical features depending on the karyotype and on the genetic background of affected girls. This study aimed to systematically investigate the key clinical features of TS in relationship to karyotype in a large pediatric Turkish patient population. Methods: Our retrospective study included 842 karyotype-proven TS patients aged 0-18 years who were evaluated in 35 different centers in Turkey in the years 2013-2014. Results: The most common karyotype was 45,X (50.7%), followed by 45,X/46,XX (10.8%), 46,X,i(Xq) (10.1%) and 45,X/46,X,i(Xq) (9.5%). Mean age at diagnosis was 10.2±4.4 years. The most common presenting complaints were short stature and delayed puberty. Among patients diagnosed before age one year, the ratio of karyotype 45,X was significantly higher than that of other karyotype groups. Cardiac defects (bicuspid aortic valve, coarctation of the aorta and aortic stenosi) were the most common congenital anomalies, occurring in 25% of the TS cases. This was followed by urinary system anomalies (horseshoe kidney, double collector duct system and renal rotation) detected in 16.3%. Hashimoto’s thyroiditis was found in 11.1% of patients, gastrointestinal abnormalities in 8.9%, ear nose and throat problems in 22.6%, dermatologic problems in 21.8% and osteoporosis in 15.3%. Learning difficulties and/or psychosocial problems were encountered in 39.1%. Insulin resistance and impaired fasting glucose were detected in 3.4% and 2.2%, respectively. Dyslipidemia prevalence was 11.4%. Conclusion: This comprehensive study systematically evaluated the largest group of karyotype-proven TS girls to date. The karyotype distribution, congenital anomaly and comorbidity profile closely parallel that from other countries and support the need for close medical surveillance of these complex patients throughout their lifespan. © Journal of Clinical Research in Pediatric Endocrinology

    Nitrosylation of nitric-oxide-sensing regulatory proteins containing [4Fe-4S] clusters gives rise to multiple iron-nitrosyl complexes

    Get PDF
    The reaction of protein-bound iron–sulfur (Fe-S) clusters with nitric oxide (NO) plays key roles in NO-mediated toxicity and signaling. Elucidation of the mechanism of the reaction of NO with DNA regulatory proteins that contain Fe-S clusters has been hampered by a lack of information about the nature of the iron-nitrosyl products formed. Herein, we report nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations that identify NO reaction products in WhiD and NsrR, regulatory proteins that use a [4Fe-4S] cluster to sense NO. This work reveals that nitrosylation yields multiple products structurally related to Roussin's Red Ester (RRE, [Fe2(NO)4(Cys)2]) and Roussin's Black Salt (RBS, [Fe4(NO)7S3]. In the latter case, the absence of 32S/34S shifts in the Fe−S region of the NRVS spectra suggest that a new species, Roussin's Black Ester (RBE), may be formed, in which one or more of the sulfide ligands is replaced by Cys thiolates
    corecore