1,049 research outputs found
Origin of gamma-ray emission in the shell of Cassiopeia A
Non-thermal X-ray emission from the shell of Cassiopeia A (Cas A) has been an
interesting subject of study, as it provides information about relativistic
electrons and their acceleration mechanisms in the shocks. Chandra X-ray
observatory revealed the detailed spectral and spatial structure of this SNR in
X-rays. The spectral analysis of Chandra X-ray data of Cas A shows unequal flux
levels for different regions of the shell, which can be attributed to different
magnetic fields in those regions. Additionally, the GeV gamma-ray emission
observed by Large Area Telescope on board Fermi Gamma Ray Space Telescope
showed that the hadronic processes are dominating in Cas A, a clear signature
of acceleration of protons. In this paper we aim to explain the GeV-TeV
gamma-ray data in the context of both leptonic and hadronic scenario. We
modeled the multi-wavelength spectrum of Cas A. We use synchrotron emission
process to explain the observed non-thermal X-ray fluxes from different regions
of the shell. These result in estimation of the model parameters, which are
then used to explain TeV gamma-ray emission spectrum. We also use hadronic
scenario to explain both GeV and TeV fluxes simultaneously. We show that a
leptonic model alone cannot explain the GeV-TeV data. Therefore, we need to
invoke a hadronic model to explain the observed GeV-TeV fluxes. We found that
although pure hadronic model is able to explain the GeV-TeV data, a
lepto-hadronic model provides the best fit to the data.Comment: Accepted in A&
Planetary migration in evolving planetesimals discs
In the current paper, we further improved the model for the migration of
planets introduced in Del Popolo et al. (2001) and extended to time-dependent
planetesimal accretion disks in Del Popolo and Eksi (2002). In the current
study, the assumption of Del Popolo and Eksi (2002), that the surface density
in planetesimals is proportional to that of gas, is released. In order to
obtain the evolution of planetesimal density, we use a method developed in
Stepinski and Valageas (1997) which is able to simultaneously follow the
evolution of gas and solid particles for up to 10^7 yrs. Then, the disk model
is coupled to migration model introduced in Del Popolo et al. (2001) in order
to obtain the migration rate of the planet in the planetesimal. We find that
the properties of solids known to exist in protoplanetary systems, together
with reasonable density profiles for the disk, lead to a characteristic radius
in the range 0.03-0.2 AU for the final semi-major axis of the giant planet.Comment: IJMP A in prin
RXTE Studies of Long-Term X-ray Spectral Variations in 4U 1820-30
We present the results of detailed spectral studies of the ultra-compact low
mass X-ray binary (LMXB) 4U 1820-30 carried out with the Rossi X-ray Timing
Explorer (RXTE) during 1996-7. 4U 1820-30 is an ``atoll'' source X-ray burster
(XRB) located in the globular cluster NGC 6624. It is known to have an 11
minute binary period and a ~176 day modulation in its 2--12 keV flux.
Observations were made with the PCA and HEXTE instruments on RXTE at roughly
one-month intervals to sample this long-term period and study flux-related
spectral changes. There are clear correlations between our fitted spectral
parameters and both the broad-band (2--50 keV) flux and the position in the
color-color diagram, as described by the parameter S_a introduced by Mendez et
al. (1999). In addition, we find a strong correlation between the position in
the color-color diagram and the frequencies of the kilohertz quasi-periodic
oscillations (kHz QPOs) reported by Zhang et al. (1998). This lends further
support to the notion that evidence for the last stable orbit in the accretion
disk of 4U 1820-30 has been observed. For a model consisting of Comptonization
of cool photons by hot electrons plus an additional blackbody component, we
report an abrupt change in the spectral parameters at the same accretion rate
at which the kHz QPOs disappear. For a model consisting of a multicolor disk
blackbody plus a cut-off power law, we find that the inner disk radius reaches
a minimum at the same accretion rate at which the kHz QPO frequency saturates,
as expected if the disk reaches the last stable orbit. Both models face
theoretical and observational problems when interpreted physically for this
system.Comment: 39 pages, 11 figures, accepted to the Astrophysical Journa
Optical Imaging and Spectroscopic Observation of the Galactic Supernova Remnant G85.9-0.6
Optical CCD imaging with H and [SII] filters and spectroscopic
observations of the galactic supernova remnant G85.9-0.6 have been performed
for the first time. The CCD image data are taken with the 1.5m Russian-Turkish
Telescope (RTT150) at TUBITAK National Observatory (TUG) and spectral data are
taken with the Bok 2.3 m telescope on Kitt Peak, AZ.
The images are taken with narrow-band interference filters H, [SII]
and their continuum. [SII]/H ratio image is performed. The ratio
obtained from [SII]/H is found to be 0.42, indicating that the
remnant interacts with HII regions. G85.9-0.6 shows diffuse-shell morphology.
[SII] average flux ratio is calculated from the
spectra, and the electron density is obtained to be 395 . From
[OIII]/H ratio, shock velocity has been estimated, pre-shock density of
, explosion energy of ergs,
interstellar extinction of , and neutral hydrogen column density
of are reported.Comment: 20 pages, 4 tables, 4 figures. Accepted for publication in
Astrophysics & Space Scienc
Possible evolution of dim radio quiet neutron star 1E 1207.4-5209 based on a B-decay model
Dim radio-quiet neutron star (DRQNS) 1E 1207.4-5209 is one of the most
heavily examined isolated neutron stars. Wide absorption lines were observed in
its spectrum obtained by both XMM-Newton and Chandra X-ray satellites. These
absorption lines can be interpreted as a principal frequency centered at 0.7
keV and its harmonics at 1.4, 2.1 and possibly 2.8 keV. The principal line can
be formed by resonant proton cyclotron scattering leading to a magnetic field
which is two orders of magnitude larger than the perpendicular component of the
surface dipole magnetic field (B) found from the rotation period (P) and the
time rate of change in the rotation period (\.{P}) of 1E 1207.4-5209. Besides,
age of the supernova remnant (SNR) G296.5+10.0 which is physically connected to
1E 1207.4-5209 is two orders of magnitude smaller than the characteristic age
(=P/2\.{P}) of the neutron star. These huge differences between the
magnetic field values and the ages can be explained based on a B-decay model.
If the decay is assumed to be exponential, the characteristic decay time turns
out to be several thousand years which is three orders of magnitude smaller
than the characteristic decay time of radio pulsars represented in an earlier
work. The lack of detection of radio emission from DRQNSs and the lack of point
sources and pulsar wind nebulae in most of the observed SNRs can also be partly
explained by such a very rapid exponential decay. The large difference between
the characteristic decay times of DRQNSs and radio pulsars must be related to
the differences in the magnetic fields, equation of states and masses of these
isolated neutron stars.Comment: 13 pages, 1 figur
Nuclear Inelastic X-Ray Scattering of FeO to 48 GPa
The partial density of vibrational states has been measured for Fe in
compressed FeO (w\"ustite) using nuclear resonant inelastic x-ray scattering.
Substantial changes have been observed in the overall shape of the density of
states close to the magnetic transiton around 20 GPa from the paramagnetic (low
pressure) to the antiferromagnetic (high pressure) state. Our data indicate a
substantial softening of the aggregate sound velocities far below the
transition, starting between 5 and 10 GPa. This is consistent with recent
radial x-ray diffraction measurements of the elastic constants in FeO. The
results indicate that strong magnetoelastic coupling in FeO is the driving
force behind the changes in the phonon spectrum of FeO.Comment: 4 pages, 4 figure
Turner syndrome and associated problems in turkish children: A multicenter study
Objective: Turner syndrome (TS) is a chromosomal disorder caused by complete or partial X chromosome monosomy that manifests various clinical features depending on the karyotype and on the genetic background of affected girls. This study aimed to systematically investigate the key clinical features of TS in relationship to karyotype in a large pediatric Turkish patient population. Methods: Our retrospective study included 842 karyotype-proven TS patients aged 0-18 years who were evaluated in 35 different centers in Turkey in the years 2013-2014. Results: The most common karyotype was 45,X (50.7%), followed by 45,X/46,XX (10.8%), 46,X,i(Xq) (10.1%) and 45,X/46,X,i(Xq) (9.5%). Mean age at diagnosis was 10.2±4.4 years. The most common presenting complaints were short stature and delayed puberty. Among patients diagnosed before age one year, the ratio of karyotype 45,X was significantly higher than that of other karyotype groups. Cardiac defects (bicuspid aortic valve, coarctation of the aorta and aortic stenosi) were the most common congenital anomalies, occurring in 25% of the TS cases. This was followed by urinary system anomalies (horseshoe kidney, double collector duct system and renal rotation) detected in 16.3%. Hashimoto’s thyroiditis was found in 11.1% of patients, gastrointestinal abnormalities in 8.9%, ear nose and throat problems in 22.6%, dermatologic problems in 21.8% and osteoporosis in 15.3%. Learning difficulties and/or psychosocial problems were encountered in 39.1%. Insulin resistance and impaired fasting glucose were detected in 3.4% and 2.2%, respectively. Dyslipidemia prevalence was 11.4%. Conclusion: This comprehensive study systematically evaluated the largest group of karyotype-proven TS girls to date. The karyotype distribution, congenital anomaly and comorbidity profile closely parallel that from other countries and support the need for close medical surveillance of these complex patients throughout their lifespan. © Journal of Clinical Research in Pediatric Endocrinology
Nitrosylation of nitric-oxide-sensing regulatory proteins containing [4Fe-4S] clusters gives rise to multiple iron-nitrosyl complexes
The reaction of protein-bound iron–sulfur (Fe-S) clusters with nitric oxide (NO) plays key roles in NO-mediated toxicity and signaling. Elucidation of the mechanism of the reaction of NO with DNA regulatory proteins that contain Fe-S clusters has been hampered by a lack of information about the nature of the iron-nitrosyl products formed. Herein, we report nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations that identify NO reaction products in WhiD and NsrR, regulatory proteins that use a [4Fe-4S] cluster to sense NO. This work reveals that nitrosylation yields multiple products structurally related to Roussin's Red Ester (RRE, [Fe2(NO)4(Cys)2]) and Roussin's Black Salt (RBS, [Fe4(NO)7S3]. In the latter case, the absence of 32S/34S shifts in the Fe−S region of the NRVS spectra suggest that a new species, Roussin's Black Ester (RBE), may be formed, in which one or more of the sulfide ligands is replaced by Cys thiolates
- …
