434 research outputs found

    Influence properties of partial squares regression.

    Get PDF
    In this paper, we compute the influence function for partial least squares regression. Thereunto, we design two alternative algorithms, according to the PLS algorithm used. One algorithm for the computation of the influence function is based on the Helland PLS algorithm, whilst the other is compatible with SIMPLS.The calculation of the influence function leads to new influence diagnostic plots for PLS. An alternative to the well known Cook distance plot is proposed, as well as a variant which is sample specific.Moreover, a novel estimate of prediction variance is deduced. The validity of the latter is corroborated by dint of a Monte Carlo simulation.Influence function; Design; Algorithms; Simulation;

    Partial robust M-regression.

    Get PDF
    Partial Least Squares (PLS) is a standard statistical method in chemometrics. It can be considered as an incomplete, or 'partial', version of the Least Squares estimator of regression, applicable when high or perfect multicollinearity is present in the predictor variables. The Least Squares estimator is well-known to be an optimal estimator for regression, but only when the error terms are normally distributed. In the absence of normality, and in particular when outliers are in the data set, other more robust regression estimators have better properties. In this paper a 'partial' version of M-regression estimators will be defined. If an appropriate weighting scheme is chosen, partial M-estimators become entirely robust to any type of outlying points, and are called Partial Robust M-estimators. It is shown that partial robust M-regression outperforms existing methods for robust PLS regression in terms of statistical precision and computational speed, while keeping good robustness properties. The method is applied to a data set consisting of EPXMA spectra of archaeological glass vessels. This data set contains several outliers, and the advantages of partial robust M-regression are illustrated. Applying partial robust M-regression yields much smaller prediction errors for noisy calibration samples than PLS. On the other hand, if the data follow perfectly well a normal model, the loss in efficiency to be paid for is very small.Advantages; Applications; Calibration; Data; Distribution; Efficiency; Estimator; Least-squares; M-estimators; Methods; Model; Optimal; Ordinary least squares; Outliers; Partial least squares; Precision; Prediction; Projection-pursuit; Regression; Robust regression; Robustness; Simulation; Spectometric quantization; Squares; Studies; Variables; Yield;

    Influence properties of partial least squares regression.

    Get PDF
    Regression; Partial least squares; Least-squares; Squares; Squares regression;

    Robust continuum regression.

    Get PDF
    Several applications of continuum regression (CR) to non-contaminated data have shown that a significant improvement in predictive power can be obtained compared to the three standard techniques which it encompasses (ordinary least squares (OLS), principal component regression (PCR) and partial least squares (PLS)). For contaminated data continuum regression may yield aberrant estimates due to its non-robustness with respect to outliers. Also for data originating from a distribution which significantly differs from the normal distribution, continuum regression may yield very inefficient estimates. In the current paper, robust continuum regression (RCR) is proposed. To construct the estimator, an algorithm based on projection pursuit (PP) is proposed. The robustness and good efficiency properties of RCR are shown by means of a simulation study. An application to an X-ray fluorescence analysis of hydrometallurgical samples illustrates the method's applicability in practice.Regression; Applications; Data; Ordinary least squares; Least-squares; Squares; Partial least squares; Yield; Outliers; Distribution; Estimator; Projection-pursuit; Robustness; Efficiency; Simulation; Studies;

    Robust continuum regression.

    Get PDF
    Several applications of continuum regression to non-contaminated data have shown that a significant improvement in predictive power can be obtained compared to the three standard techniques which it encompasses (Ordinary least Squares, Principal Component Regression and Partial Least Squares). For contaminated data continuum regression may yield aberrant estimates due to its non-robustness with respect to outliers. Also for data originating from a distribution which significantly differs from the normal distribution, continuum regression may yield very inefficient estimates. In the current paper, robust continuum regression (RCR) is proposed. To construct the estimator, an algorithm based on projection pursuit is proposed. The robustness and good efficiency properties of RCR are shown by means of a simulation study. An application to an X-ray fluorescence analysis of hydrometallurgical samples illustrates the method's applicability in practice.Advantages; Applications; Calibration; Continuum regression (CR); Data; Distribution; Efficiency; Estimator; Least-squares; M-estimators; Methods; Model; Optimal; Ordinary least squares; Outliers; Partial least squares; Precision; Prediction; Projection-pursuit; Regression; Research; Robust continuum regression (RCR); Robust multivariate calibration; Robust regression; Robustness; Simulation; Squares; Studies; Variables; Yield;

    The Primary Energy Dependence of Backscattered Electron Images Up to 100 keV

    Get PDF
    The backscattered electron coefficient is known to be primarily dependent on the atomic number of the sample. If the atomic number increases, the backscattered electron coefficient increases, which results in a higher intensity in the backscattered electron image. The dependence of the primary electron energy is somewhat more complicated. Using photographic material (with composition AgBr-AgI), it is seen that the contrast in the backscattered electron image increases with the primary electron energy. Using three independent methods, based on image analysis techniques, it is shown that the difference between the backscattered electron coefficient of AgBr and AgI increases with the primary electron energy in the range from 40 to 100 keV

    Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation.

    Get PDF
    The study of biliary disease has been constrained by a lack of primary human cholangiocytes. Here we present an efficient, serum-free protocol for directed differentiation of human induced pluripotent stem cells into cholangiocyte-like cells (CLCs). CLCs show functional characteristics of cholangiocytes, including bile acids transfer, alkaline phosphatase activity, γ-glutamyl-transpeptidase activity and physiological responses to secretin, somatostatin and vascular endothelial growth factor. We use CLCs to model in vitro key features of Alagille syndrome, polycystic liver disease and cystic fibrosis (CF)-associated cholangiopathy. Furthermore, we use CLCs generated from healthy individuals and patients with polycystic liver disease to reproduce the effects of the drugs verapamil and octreotide, and we show that the experimental CF drug VX809 rescues the disease phenotype of CF cholangiopathy in vitro. Our differentiation protocol will facilitate the study of biological mechanisms controlling biliary development, as well as disease modeling and drug screening.This work was funded by ERC starting grant Relieve IMDs (L.V., N.H.), the Cambridge Hospitals National Institute for Health Research Biomedical Research Center (L.V., N.H., F.S.), the Evelyn trust (N.H.) and the EU Fp7 grant TissuGEN (M.CDB.). FS has been supported by an Addenbrooke’s Charitable Trust Clinical Research Training Fellowship and a joint MRC-Sparks Clinical Research Training Fellowship.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nbt.327

    Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk outcome pairs, and new data on risk exposure levels and risk outcome associations. Methods: We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017. Findings: In 2017,34.1 million (95% uncertainty interval [UI] 33.3-35.0) deaths and 121 billion (144-1.28) DALYs were attributable to GBD risk factors. Globally, 61.0% (59.6-62.4) of deaths and 48.3% (46.3-50.2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10.4 million (9.39-11.5) deaths and 218 million (198-237) DALYs, followed by smoking (7.10 million [6.83-7.37] deaths and 182 million [173-193] DALYs), high fasting plasma glucose (6.53 million [5.23-8.23] deaths and 171 million [144-201] DALYs), high body-mass index (BMI; 4.72 million [2.99-6.70] deaths and 148 million [98.6-202] DALYs), and short gestation for birthweight (1.43 million [1.36-1.51] deaths and 139 million [131-147] DALYs). In total, risk-attributable DALYs declined by 4.9% (3.3-6.5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23.5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18.6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low. Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
    corecore