12 research outputs found

    Extending glacier monitoring into the Little Ice Age and beyond

    Full text link
    Reconstructions of glacier front variations based on well-dated historical evidence from the Alps, Scandinavia, and the southern Andes, extend the observational record as far back as the 16th century. The standardized compilation of paleo-glacier length changes is now an integral part of the internationally coordinated glacier monitoring system

    Historically unprecedented global glacier decline in the early 21st century

    No full text
    Observations show that glaciers around the world are in retreat and losing mass. Internationally coordinated for over a century, glacier monitoring activities provide an unprecedented dataset of glacier observations from ground, air and space. Glacier studies generally select specific parts of these datasets to obtain optimal assessments of the mass-balance data relating to the impact that glaciers exercise on global sea-level fluctuations or on regional runoff. In this study we provide an overview and analysis of the main observational datasets compiled by the World Glacier Monitoring Service (WGMS). The dataset on glacier front variations (similar to 42 000 since 1600) delivers clear evidence that centennial glacier retreat is a global phenomenon. Intermittent readvance periods at regional and decadal scale are normally restricted to a subsample of glaciers and have not come close to achieving the maximum positions of the Little Ice Age (or Holocene). Glaciological and geodetic observations (similar to 5200 since 1850) show that the rates of early 21st-century mass loss are without precedent on a global scale, at least for the time period observed and probably also for recorded history, as indicated also in reconstructions from written and illustrated documents. This strong imbalance implies that glaciers in many regions will very likely suffer further ice loss, even if climate remains stable.</p

    Summary of International Glacier Monitoring Summit

    Full text link
    In the first week of September 2010, international experts on glacier monitoring convened in Zermatt, Switzerland, for two separate but related meetings. They discussed glacier data compiled over the past 150 years and how to improve this dataset to meet the challenges of the 21st century, pre- sented latest results from in situ and remotely sensed obser- vations, and came up with key tasks for the glacier moni- toring community for the coming decade

    Historically unprecedented global glacier changes in the 1 early 21st century

    No full text
    Observations show that glaciers around the world are in retreat and losing mass. Internationally coordinated for over a century, glacier monitoring activities provide an unprecedented dataset of glacier observations from ground, air and space. Glacier studies generally select specific parts of these datasets to obtain optimal assessments of the mass-balance data relating to the impact that glaciers exercise on global sea-level fluctuations or on regional runoff. In this study we provide an overview and analysis of the main observational datasets compiled by the World Glacier Monitoring Service (WGMS). The dataset on glacier front variations (∼42 000 since 1600) delivers clear evidence that centennial glacier retreat is a global phenomenon. Intermittent readvance periods at regional and decadal scale are normally restricted to a subsample of glaciers and have not come close to achieving the maximum positions of the Little Ice Age (or Holocene). Glaciological and geodetic observations (∼5200 since 1850) show that the rates of early 21st-century mass loss are without precedent on a global scale, at least for the time period observed and probably also for recorded history, as indicated also in reconstructions from written and illustrated documents. This strong imbalance implies that glaciers in many regions will very likely suffer further ice loss, even if climate remains stable.Fil: Zemp, Michael. Universitat Zurich; SuizaFil: Frey, Holger. Universitat Zurich; SuizaFil: Gärtner-Roer, Isabelle. Universitat Zurich; SuizaFil: Nussbaumer, Samuel U.. Universitat Zurich; SuizaFil: Hoelzle, Martin. Universite de Fribourg; Suiza. Universitat Zurich; SuizaFil: Paul, Frank. Universitat Zurich; SuizaFil: Haeberli, Wilfried. Universitat Zurich; SuizaFil: Denzinger, Florian. Universitat Zurich; SuizaFil: Ahlstrøm, Andreas P.. Geological Survey Of Denmark And Greenland; DinamarcaFil: Anderson, Brian. Victoria University Of Wellington; Nueva ZelandaFil: Bajracharya, Samjwal. International Centre For Integrated Mountain Development; NepalFil: Baroni, Carlo. Università degli Studi di Pisa; ItaliaFil: Braun, Ludwig N.. Bavarian Academy Of Sciences; AlemaniaFil: Càceres, Bolívar E.. Instituto Nacional de Meteorología E Hidrología; EcuadorFil: Casassa, Gino. Universidad de Magallanes; ChileFil: Cobos, Guillermo. Universidad Politécnica de Valencia; EspañaFil: Dàvila, Luzmila R.. Unidad de Glaciología y Recursos Hídricos; PerúFil: Delgado Granados, Hugo. Universidad Nacional Autónoma de México; MéxicoFil: Demuth, Michael N.. Natural Resources Canada; CanadáFil: Espizua, Lydia Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Fischer, Andrea. Osterreichische Akademie Der Wissenschaften; AustriaFil: Fujita, Koji. Nagoya University; JapónFil: Gadek, Bogdan. University Of Silesia; PoloniaFil: Ghazanfar, Ali. Global Change Impact Studies Centre; PakistánFil: Hagen, Jon Ove. University of Oslo; NoruegaFil: Holmlund, Per. Stockholms Universitet; SueciaFil: Karimi, Neamat. Ministry of Energy; IránFil: Li, Zhongqin. Chinese Academy of Sciences; República de ChinaFil: Pelto, Mauri. Nichols College; Estados UnidosFil: Pitte, Pedro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Popovnin, Victor V.. Moscow State University; RusiaFil: Portocarrero, Cesar A.. Unidad de Glaciología y Recursos Hídricos; PerúFil: Prinz, Rainer. Universidad de Innsbruck; AustriaFil: Sangewar, Chandrashekhar V.. Geological Survey of India; IndiaFil: Severskiy, Igor. Institute Of Geography; KazajistánFil: Sigurdsson, Oddur. Icelandic Meteorological Offic; IslandiaFil: Soruco, Alvaro. Universidad Mayor de San Andrés; BoliviaFil: Usubaliev, Ryskul. Central Asian Institute For Applied Geosciences; KirguistánFil: Vincent, Christian. Laboratory of Glaciology and Environmental Geophysics; Franci

    Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America

    No full text
    There is uncertainty about the interhemispheric timing of climatic changes during the last glacial&ndash;interglacial transition. Different hypotheses, relying on different lines of evidence, point variously to the Northern Hemisphere leading the Southern Hemisphere and vice versa, or to synchrony between the hemispheres. Southern South America is well placed to test the various alternatives using both glacial and palaeoecological evidence. We argue here from a synthesis of key proxy records that there was a sudden rise in temperature that initiated deglaciation sychronously over 16&deg; of latitude at 14 600&ndash;14 300 14C yr BP (17 500&ndash;17 150 cal. yr). There was a second step of warming in the Chilean Lake District at 13 000&ndash;12 700 14C yr BP (15 650&ndash;15 350 cal. yr), which saw temperatures rise to close to modern values. A third warming step, particularly clear in the south, occurred at ca. 10 000 14C yr BP (11 400 cal. yr), the latter achieving Holocene levels of warmth. Following the initial warming, there was a lagged response in precipitation as the westerlies, after a delay of ca. 1600 yr, migrated from their northern glacial location to their present latitude, which was attained by 12 300 14C yr BP (14 300 cal. yr). The latitudinal contrasts in the timing of maximum precipitation are reflected in regional contrasts in vegetation change and in glacier behaviour. The large scale of a 80-km glacier advance in the Strait of Magellan at 12 700&ndash;10 300 14C yr BP (15 350&ndash;12 250 cal. yr), which spans the Antarctic Cold Reversal and the Younger Dryas, was influenced by the return of the westerlies to southern latitudes. The delay in the migration of the westerlies coincides with the Heinrich 1 iceberg event in the North Atlantic. The suppressed global thermohaline circulation at the time may have affected sea-surface temperatures in the South Pacific, and the return of the westerlies to their present southerly latitude only followed ocean reorganisation to its present interglacial mode
    corecore