6,898 research outputs found
Induction plasma calcining of pigment particles for thermal control coatings
Induction plasma calcining of pigment particles for thermal control coatings on space vehicle
Privatization of irrigation schemes in New Zealand
PrivatizationIrrigation programsWater rightsGovernment managed irrigation systemsLocal governmentLegislationPerformance
Plasma calcining of pigment particles for thermal control coatings
Method utilizes an RF excited plasma to surface deactivate thermally stable powders at high temperatures. Utilization of this plasma heat treatment at high temperatures can be carried out without grain growth, calcination, or agglomeration
Ionospheric E-region Irregularities Produced by Non-linear Coupling of Unstable Plasma Waves
Ionospheric E region irregularities produced by nonlinear coupling of unstable plasma wave
Calibration of pressure-dependent sensitivity and discrimination in Nier-type noble gas ion sources
The efficiency of many noble gas mass spectrometers to ionize gas species is known to be a function of the pressure of gas in the spectrometer. This work shows how the half plate voltage for maximum He or Ar signal depends on the spectrometer pressure and shows that the half plate voltage for maximum 4He sensitivity does not coincide with the half plate voltage for maximum 3He sensitivity. In addition, half plate voltage has a greater control on sensitivity at higher spectrometer pressures. Variations in He and Ar sensitivity and isotopic discrimination as a function of pressure are due, at least in part, to these variations in the position of maximum sensitivity with respect to half plate voltage. The maximum sensitivity settings shift to lower half plate voltage at high spectrometer pressures, irrespective of if the pressure increase is due to the gas being investigated or a different species. Therefore noble gas mass spectrometers should always be tuned at the maximum possible pressure; measurements at higher pressures should be avoided. Significant errors in the spectrometer sensitivity and discrimination can result from improper tuning and calibration of noble gas mass spectrometers
Relic Radiation from an Evaporating Black Hole
We present a non-string-theoretic calculation of the microcanonical entropy
of relic integer-spin Hawking radiation -- at fixed total energy . The only
conserved macroscopic quantity is the total energy (the total energy of the
relic radiation). Data for a boundary-value approach, with massless,
integer-spin perturbations, are set on initial and final space-like
hypersurfaces. In the resulting 1-dimensional statistical-mechanics problem,
the real part of the (complex) time separation at spatial infinity, , is the variable conjugate to the total
energy. We count the number of weak-field configurations on the final
space-like hypersurface with energy . One recovers the Cardy formula and the
Bekenstein-Hawking entropy, if Re(T) is of the order of the black-hole life-
time, leading to a statistical interpretation of black-hole entropy. The
microcanonical entropy includes a logarithmic correction to the black-hole area
law, which is {\it universal} (independent of black-hole parameters). Here, the
discreteness of the energy levels is crucial. This approach is compared with
that of string theory for the transition to the fundamental-string r\'egime in
the final stages of evaporation. The squared coupling, , regulating the
transition to a highly-excited string state and {\it vice versa}, can be
related to the angle, , of complex-time rotation above. The
strong-coupling r\'egime corresponds to a Euclidean black hole, while the
physical limit of a Lorentzian space-time (as ) corresponds to
the weak-coupling r\'egime. This resembles the transition to a highly-excited
string-like state which subsequently decays into massless particles, thereby
avoiding the naked singularity.Comment: To appear in International Journal of Modern Physics
- …
