21 research outputs found
Continuous monitoring of the bronchial epithelial lining fluid by microdialysis
<p>Abstract</p> <p>Background</p> <p>Contents of the epithelial lining fluid (ELF) of the bronchi are of central interest in lung diseases, acute lung injury and pharmacology. The most commonly used technique broncheoalveolar lavage is invasive and may cause lung injury. Microdialysis (MD) is a method for continuous sampling of extracellular molecules in the immediate surroundings of the catheter. Urea is used as an endogenous marker of dilution in samples collected from the ELF. The aim of this study was to evaluate bronchial MD as a continuous monitor of the ELF.</p> <p>Methods</p> <p>Microdialysis catheters were introduced into the right main stem bronchus and into the right subclavian artery of five anesthetized and normoventilated pigs. The flowrate was 2 μl/min and the sampling interval was 60 minutes. Lactate and fluorescein-isothiocyanate-dextran 4 kDa (FD-4) infusions were performed to obtain two levels of steady-state concentrations in blood. Accuracy was defined as [bronchial-MD] divided by [arterial-MD] in percent. Data presented as mean ± 95 percent confidence interval.</p> <p>Results</p> <p>The accuracy of bronchial MD was calculated with and without correction by the arteriobronchial urea gradient. The arteriobronchial lactate gradient was 1.2 ± 0.1 and FD-4 gradient was 4.0 ± 1.2. Accuracy of bronchial MD with a continuous lactate infusion was mean 25.5% (range 5.7–59.6%) with a coefficient of variation (CV) of 62.6%. With correction by the arteriobronchial urea gradient accuracy was mean 79.0% (57.3–108.1%) with a CV of 17.0%.</p> <p>Conclusion</p> <p>Urea as a marker of catheter functioning enhances bronchial MD and makes it useful for monitoring substantial changes in the composition of the ELF.</p
Comparison of blood lactate concentrations obtained during incremental and constant intensity exercise
Comparison of blood lactate concentrations obtained during incremental and constant intensity exercise
Improving Lactate Analysis with the YSI 2300 Gl: Hemolyzing Blood Samples Makes Results Comparable with Those for Deproteinized Whole Blood
Abstract
To obviate the well-documented problem of hematocrit dependency of the Yellow Springs Instruments (YSI) whole-blood lactate analyzer, we modified the dilution buffer by including a lysing reagent. This makes the results comparable with those of methods performed with deproteinized whole-blood samples. No centrifugation step is needed, thus preserving the convenience of the YSI instrument for stat and field use. The modification works equally well on plasma samples. Lactate concentrations measured in nonhemolyzed whole blood are not comparable with results for hemolyzed whole blood or protein-precipitated whole blood. We therefore recommend to all users of YSI equipment to lyse the erythrocytes before lactate determinations.</jats:p
The effect of different blood sampling sites and analyses on the relationship~ between exercise intensity and 4.0 mmol ·1<sup>-</sup> blood lactate concentration
The Effect of Vitamin E and Ubiquinone-10 Supplementation on Physical Performance and Muscle Metabolism
Muscle heat production and anaerobic energy turnover during repeated intense dynamic exercise in humans
The aim of the present study was to examine muscle heat production, oxygen uptake and anaerobic energy turnover throughout repeated intense exercise to test the hypotheses that (i) energy turnover is reduced when intense exercise is repeated and (ii) anaerobic energy production is diminished throughout repeated intense exercise.Five subjects performed three 3 min intense one-legged knee-extensor exercise bouts (EX1, EX2 and EX3) at a power output of 65 ± 5 W (mean ±s.e.m.), separated by 6 min rest periods. Muscle, femoral arterial and venous temperatures were measured continuously during exercise for the determination of muscle heat production. In addition, thigh blood flow was measured and femoral arterial and venous blood were sampled frequently during exercise for the determination of muscle oxygen uptake. Anaerobic energy turnover was estimated as the difference between total energy turnover and aerobic energy turnover.Prior to exercise, the temperature of the quadriceps muscle was passively elevated to 37.02 ± 0.12 °C and it increased 0.97 ± 0.08 °C during EX1, which was higher (P < 0.05) than during EX2 (0.79 ± 0.05 °C) and EX3 (0.77 ± 0.06 °C). In EX1 the rate of muscle heat accumulation was higher (P < 0.05) during the first 120 s compared to EX2 and EX3, whereas the rate of heat release to the blood was greater (P < 0.05) throughout EX2 and EX3 compared to EX1. The rate of heat production, determined as the sum of heat accumulation and release, was the same in EX1, EX2 and EX3, and it increased (P < 0.05) from 86 ± 8 during the first 15 s to 157 ± 7 J s−1 during the last 15 s of EX1.Oxygen extraction was higher during the first 60 s of EX2 and EX3 than in EX 1 and thigh oxygen uptake was elevated (P < 0.05) during the first 120 s of EX2 and throughout EX3 compared to EX1. The anaerobic energy production during the first 105 s of EX2 and 150 s of EX3 was lower (P < 0.05) than in EX1.The present study demonstrates that when intense exercise is repeated muscle heat production is not changed, but muscle aerobic energy turnover is elevated and anaerobic energy production is reduced during the first minutes of exercise
The effect of different blood sampling sites and analyses on the relationship~ between exercise intensity and 4.0 mmol �1? blood lactate concentration
Cytochrome P450 2C9 plays an important role in the regulation of exercise-induced skeletal muscle blood flow and oxygen uptake in humans
Previous studies show that exercise-induced hyperaemia is unaffected by systemic inhibition of nitric oxide synthase (NOS) and it has been proposed that this may be due to compensation by other vasodilators. We studied the involvement of cytochrome P450 2C9 (CYP 2C9) in the regulation of skeletal muscle blood flow in humans and the interaction between CYP 2C9 and NOS. Seven males performed knee extensor exercise. Blood flow was measured by thermodilution and blood samples were drawn frequently from the femoral artery and vein at rest, during exercise and in recovery. The protocol was repeated three times on the same day. The first and the third protocols were controls, and in the second protocol either the CYP 2C9 inhibitor sulfaphenazole alone, or sulfaphenazole in combination with the NOS inhibitor Nω-monomethyl-l-arginine (l-NMMA) were infused. Compared with control there was no difference in blood flow at any time with sulfaphenazole infusion (P > 0.05) whereas with infusion of sulfaphenazole and l-NMMA, blood flow during exercise was 16 ± 4 % lower than in control (9 min: 3.67 ± 0.31 vs. 4.29 ± 0.20 l min−1; P < 0.05). Oxygen uptake during exercise was 12 ± 3 % lower (9 min: 525 ± 46 vs. 594 ± 24 ml min−1; P < 0.05) with co-infusion of sulfaphenazole and l-NMMA, whereas oxygen uptake during sulfaphenazole infusion alone was not different from that of control (P > 0.05). The results demonstrate that CYP 2C9 plays an important role in the regulation of hyperaemia and oxygen uptake during exercise. Since inhibition of neither NOS nor CYP 2C9 alone affect skeletal muscle blood flow, an interaction between CYP 2C9 and NOS appears to exist so that a CYP-dependent vasodilator mechanism takes over when NO production is compromised
