101 research outputs found
On the dynamics and collisional growth of planetesimals in misaligned binary systems
Context. Abridged. Many stars are members of binary systems. During early
phases when the stars are surrounded by discs, the binary orbit and disc
midplane may be mutually inclined. The discs around T Tauri stars will become
mildly warped and undergo solid body precession around the angular momentum
vector of the binary system. It is unclear how planetesimals in such a disc
will evolve and affect planet formation. Aims. We investigate the dynamics of
planetesimals embedded in discs that are perturbed by a binary companion on a
circular, inclined orbit. We examine collisional velocities of the
planetesimals to determine when they can grow through accretion. We vary the
binary inclination, binary separation, D, disc mass, and planetesimal radius.
Our standard model has D=60 AU, inclination=45 deg, and a disc mass equivalent
to the MMSN. Methods. We use a 3D hydrodynamics code to model the disc.
Planetesimals are test particles which experience gas drag, the gravitational
force of the disc, the companion star gravity. Planetesimal orbit crossing
events are detected and used to estimate collisional velocities. Results. For
binary systems with modest inclination (25 deg), disc gravity prevents
planetesimal orbits from undergoing strong differential nodal precession (which
occurs in absence of the disc), and forces planetesimals to precess with the
disc on average. For bodies of different size the orbit planes become modestly
mutually inclined, leading to collisional velocities that inhibit growth. For
larger inclinations (45 degrees), the Kozai effect operates, leading to
destructively large relative velocities. Conclusions. Planet formation via
planetesimal accretion is difficult in an inclined binary system with
parameters similar to those considered in this paper. For systems in which the
Kozai mechanism operates, the prospects for forming planets are very remote.Comment: 24 pages, 16 figures, recently published in Astronomy and
Astrophysic
Against all odds? Forming the planet of the HD196885 binary
HD196885Ab is the most "extreme" planet-in-a-binary discovered to date, whose
orbit places it at the limit for orbital stability. The presence of a planet in
such a highly perturbed region poses a clear challenge to planet-formation
scenarios. We investigate this issue by focusing on the planet-formation stage
that is arguably the most sensitive to binary perturbations: the mutual
accretion of kilometre-sized planetesimals. To this effect we numerically
estimate the impact velocities amongst a population of circumprimary
planetesimals. We find that most of the circumprimary disc is strongly hostile
to planetesimal accretion, especially the region around 2.6AU (the planet's
location) where binary perturbations induce planetesimal-shattering of
more than 1km/s. Possible solutions to the paradox of having a planet in such
accretion-hostile regions are 1) that initial planetesimals were very big, at
least 250km, 2) that the binary had an initial orbit at least twice the present
one, and was later compacted due to early stellar encounters, 3) that
planetesimals did not grow by mutual impacts but by sweeping of dust (the
"snowball" growth mode identified by Xie et al., 2010b), or 4) that HD196885Ab
was formed not by core-accretion but by the concurent disc instability
mechanism. All of these 4 scenarios remain however highly conjectural.Comment: accepted for publication by Celestial Mechanics and Dynamical
Astronomy (Special issue on EXOPLANETS
Planet formation in Binaries
Spurred by the discovery of numerous exoplanets in multiple systems, binaries
have become in recent years one of the main topics in planet formation
research. Numerous studies have investigated to what extent the presence of a
stellar companion can affect the planet formation process. Such studies have
implications that can reach beyond the sole context of binaries, as they allow
to test certain aspects of the planet formation scenario by submitting them to
extreme environments. We review here the current understanding on this complex
problem. We show in particular how each of the different stages of the
planet-formation process is affected differently by binary perturbations. We
focus especially on the intermediate stage of kilometre-sized planetesimal
accretion, which has proven to be the most sensitive to binarity and for which
the presence of some exoplanets observed in tight binaries is difficult to
explain by in-situ formation following the "standard" planet-formation
scenario. Some tentative solutions to this apparent paradox are presented. The
last part of our review presents a thorough description of the problem of
planet habitability, for which the binary environment creates a complex
situation because of the presence of two irradation sources of varying
distance.Comment: Review chapter to appear in "Planetary Exploration and Science:
Recent Advances and Applications", eds. S. Jin, N. Haghighipour, W.-H. Ip,
Springer (v2, numerous typos corrected
Observation of Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like Pr and Pm Ions
We report on time-modulated two-body weak decays observed in the orbital
electron capture of hydrogen-like Pr and Pm
ions coasting in an ion storage ring. Using non-destructive single ion,
time-resolved Schottky mass spectrometry we found that the expected exponential
decay is modulated in time with a modulation period of about 7 seconds for both
systems. Tentatively this observation is attributed to the coherent
superposition of finite mass eigenstates of the electron neutrinos from the
weak decay into a two-body final state.Comment: 12 pages, 5 figure
GNSS transpolar earth reflectometry exploriNg system (G-TERN): Mission concept
The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a "dynamic mapper" of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance
Extracellular proteins of Trametes hirsuta st. 072 induced by copper ions and a lignocellulose substrate
Granger causality in integrated GC–MS and LC–MS metabolomics data reveals the interface of primary and secondary metabolism
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
- …
