732 research outputs found
Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms
Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy (OBX) model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed altered voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 μg/kg/infusion). To this aim, olfactory-bulbectomized (OBX) and sham-operated (SHAM) Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous [fixed ratio 1 (FR-1)] schedule of reinforcement in 2 h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behavior after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg), did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg) did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2) reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens (NAc) of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive-like state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats
Quantitative analysis of cryptic splicing associated with TDP-43 depletion
BACKGROUND: Reliable exon recognition is key to the splicing of pre-mRNAs into mature mRNAs. TDP-43 is an RNA-binding protein whose nuclear loss and cytoplasmic aggregation are a hallmark pathology in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). TDP-43 depletion causes the aberrant inclusion of cryptic exons into a range of transcripts, but their extent, relevance to disease pathogenesis and whether they are caused by other RNA-binding proteins implicated in ALS/FTD are unknown. METHODS: We developed an analysis pipeline to discover and quantify cryptic exon inclusion and applied it to publicly available human and murine RNA-sequencing data. RESULTS: We detected widespread cryptic splicing in TDP-43 depletion datasets but almost none in another ALS/FTD-linked protein FUS. Sequence motif and iCLIP analysis of cryptic exons demonstrated that they are bound by TDP-43. Unlike the cryptic exons seen in hnRNP C depletion, those repressed by TDP-43 cannot be linked to transposable elements. Cryptic exons are poorly conserved and inclusion overwhelmingly leads to nonsense-mediated decay of the host transcript, with reduced transcript levels observed in differential expression analysis. RNA-protein interaction data on 73 different RNA-binding proteins showed that, in addition to TDP-43, 7 specifically bind TDP-43 linked cryptic exons. This suggests that TDP-43 competes with other splicing factors for binding to cryptic exons and can repress cryptic exon inclusion. CONCLUSIONS: Our quantitative analysis pipeline confirms the presence of cryptic exons during the depletion of TDP-43 but not FUS providing new insight into to RNA-processing dysfunction as a cause or consequence in ALS/FTD
Crucial role of α4 and α6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration
The identification of the molecular mechanisms involved in nicotine addiction and its cognitive consequences is a worldwide priority for public health. Novel in vivo paradigms were developed to match this aim. Although the beta2 subunit of the neuronal nicotinic acetylcholine receptor (nAChR) has been shown to play a crucial role in mediating the reinforcement properties of nicotine, little is known about the contribution of the different alpha subunit partners of beta2 (i.e., alpha4 and alpha6), the homo-pentameric alpha7, and the brain areas other than the ventral tegmental area (VTA) involved in nicotine reinforcement. In this study, nicotine (8.7-52.6 microg free base/kg/inf) self-administration was investigated with drug-naive mice deleted (KO) for the beta2, alpha4, alpha6 and alpha7 subunit genes, their wild-type (WT) controls, and KO mice in which the corresponding nAChR subunit was selectively re-expressed using a lentiviral vector (VEC mice). We show that WT mice, beta2-VEC mice with the beta2 subunit re-expressed exclusively in the VTA, alpha4-VEC mice with selective alpha4 re-expression in the VTA, alpha6-VEC mice with selective alpha6 re-expression in the VTA, and alpha7-KO mice promptly self-administer nicotine intravenously, whereas beta2-KO, beta2-VEC in the substantia nigra, alpha4-KO and alpha6-KO mice do not respond to nicotine. We thus define the necessary and sufficient role of alpha4beta2- and alpha6beta2-subunit containing nicotinic receptors (alpha4beta2*- and alpha6beta2*-nAChRs), but not alpha7*-nAChRs, present in cell bodies of the VTA, and their axons, for systemic nicotine reinforcement in drug-naive mic
C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins
An expanded GGGGCC repeat in C9orf72 is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis. A fundamental question is whether toxicity is driven by the repeat RNA itself and/or by dipeptide repeat proteins generated by repeat-associated, non-ATG translation. To address this question we developed in vitro and in vivo models to dissect repeat RNA and dipeptide repeat protein toxicity. Expression of pure repeats in Drosophila caused adult-onset neurodegeneration attributable to poly-(glycine-arginine) proteins. Thus, expanded repeats promoted neurodegeneration through neurotoxic proteins. Expression of individual dipeptide repeat proteins with a non-GGGGCC RNA sequence showed both poly-(glycine-arginine) and poly-(proline-arginine) proteins caused neurodegeneration. These findings are consistent with a dual toxicity mechanism, whereby both arginine-rich proteins and repeat RNA contribute to C9orf72-mediated neurodegeneration
Functional liquid structures by emulsification of graphene and other two-dimensional nanomaterials
Pickering emulsions stabilised with nanomaterials provide routes to a range of functional macroscopic assemblies. We demonstrate the formation and properties of water-in-oil emulsions prepared through liquid-phase exfoliation of graphene. Due to the functional nature of the stabiliser, the emulsions exhibit conductivity due to inter-particle tunnelling. We demonstrate a strain sensing application with a large gauge factor of ~40; the highest reported in a liquid. Our methodology can be applied to other two-dimensional layered materials opening up applications such as energy storage materials, and flexible and printable electronics
Conserved presence of G-quadruplex forming sequences in the Long Terminal Repeat Promoter of Lentiviruses
G-quadruplexes (G4s) are secondary structures of nucleic acids that epigenetically regulate cellular processes. In the human immunodeficiency lentivirus 1 (HIV-1), dynamic G4s are located in the unique viral LTR promoter. Folding of HIV-1 LTR G4s inhibits viral transcription; stabilization by G4 ligands intensifies this effect. Cellular proteins modulate viral transcription by inducing/unfolding LTR G4s. We here expanded our investigation on the presence of LTR G4s to all lentiviruses. G4s in the 5'-LTR U3 region were completely conserved in primate lentiviruses. A G4 was also present in a cattle-infecting lentivirus. All other non-primate lentiviruses displayed hints of less stable G4s. In primate lentiviruses, the possibility to fold into G4s was highly conserved among strains. LTR G4 sequences were very similar among phylogenetically related primate viruses, while they increasingly differed in viruses that diverged early from a common ancestor. A strong correlation between primate lentivirus LTR G4s and Sp1/NF\u3baB binding sites was found. All LTR G4s folded: their complexity was assessed by polymerase stop assay. Our data support a role of the lentiviruses 5'-LTR G4 region as control centre of viral transcription, where folding/unfolding of G4s and multiple recruitment of factors based on both sequence and structure may take place
Travelling Together: A Unifying Pathomechanism for ALS
Axonal transport is critical for neuronal homeostasis and relies on motor complexes bound to cargoes via specific adaptors. However, the mechanisms responsible for the spatiotemporal regulation of axonal transport are not completely understood. A recent study by Liao et al. contributes to filling this gap by reporting that RNA granules ‘hitchhike’ on LAMP1-positive organelles using annexin A11 as a tether
The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis
Dysregulated RNA metabolism is emerging as a crucially important mechanism underpinning the pathogenesis of frontotemporal dementia (FTD) and the clinically, genetically and pathologically overlapping disorder of amyotrophic lateral sclerosis (ALS). Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a family of RNA-binding proteins with diverse, multi-functional roles across all aspects of mRNA processing. The role of these proteins in neurodegeneration is far from understood. Here, we review some of the unifying mechanisms by which hnRNPs have been directly or indirectly linked with FTD/ALS pathogenesis, including their incorporation into pathological inclusions and their best-known roles in pre-mRNA splicing regulation. We also discuss the broader functionalities of hnRNPs including their roles in cryptic exon repression, stress granule assembly and in co-ordinating the DNA damage response, which are all emerging pathogenic themes in both diseases. We then present an integrated model that depicts how a broad-ranging network of pathogenic events can arise from declining levels of functional hnRNPs that are inadequately compensated for by autoregulatory means. Finally, we provide a comprehensive overview of the most functionally relevant cellular roles, in the context of FTD/ALS pathogenesis, for hnRNPs A1-U
Disease mechanism, biomarker and therapeutics for spinal and bulbar muscular atrophy (SBMA)
Spinal and bulbar muscular atrophy (SBMA) is a hereditary neuromuscular disorder caused by CAG trinucleotide expansion in the gene encoding the androgen receptor (AR). In the central nervous system, lower motor neurons are selectively affected, whereas pathology of patients and animal models also indicates involvement of skeletal muscle including loss of fast-twitch type 2 fibres and increased slow-twitch type 1 fibres, together with a glycolytic-to-oxidative metabolic switch. Evaluation of muscle and fat using MRI, in addition to biochemical indices such as serum creatinine level, are promising biomarkers to track the disease progression. The serum level of creatinine starts to decrease before the onset of muscle weakness, followed by the emergence of hand tremor, a prodromal sign of the disease. Androgen-dependent nuclear accumulation of the polyglutamine-expanded AR is an essential step in the pathogenesis, providing therapeutic opportunities via hormonal manipulation and gene silencing with antisense oligonucleotides. Animal studies also suggest that hyperactivation of Src, alteration of autophagy and a mitochondrial deficit underlie the neuromuscular degeneration in SBMA and provide alternative therapeutic targets
- …
