957 research outputs found
Meson multiplicity in nucleus-nucleus collisions above 4 GeV/amu
Dependence of meson multiplicity on energy for 1486 cosmic ray nucleus-emulsion nucleus interactions is examined. Comparison is made to predictions of the Multi-Chain Model
Stopping relativistic Xe, Ho, Au and U nuclei in nuclear emulsions
Nuclei of Xe-54, Ho-67, Au-79 and U-92 accelerated at the Bevalac to energies between 1200 and 900 MeV/n were stopped in nuclear emulsions. The observed residual ranges were compared with those calculated from various models of energy loss and shown to be most consistent with a calculation that includes those higher order correction terms proposed previously to describe the energy loss of highly charged particles, for which the first Born approximation is not valid
The charge and energy spectra of heavy cosmic ray nuclei
A charged particle detector array flown in a high altitude balloon detected and measured some 30,000 cosmic ray nuclei with Z greater than or equal to 12. The charge spectrum at the top of the atmosphere for nuclei with E greater than 650 MeV/n and the energy spectrum for 650 less than or equal to E less than 1800 MeV/n are reported and compared with previously published results. The charge spectrum at the source of cosmic rays is deduced from these data and compared with a recent compilation of galactic abundances
Gamma ray emission from the region of the galactic center
A combination nuclear emulsion-spark chamber gamma ray (E=100 MeV) telescope was used to study the region of sky that includes the Galactic Center. 95% confidence upper limits on the flux from the reported sources G gamma 2 - 3 and Sgr gamma-1 were placed at 4.4 and 8.8 x 10 to the minus 5th power protons/sq cm-sec, and a similar limit on the emission from the Galactic Center as a point source (plus or minus .75 degrees) was placed at 3.3 x 10 to the minus 5th power protons/sq cm-sec. No enhanced emission was observed from the Galactic Plane (plus or minus 6 degrees) and an upper limit of 2 x 10 to the minus 4th power protons/sq cm-sec rad/ was obtained
Analytical description of finite size effects for RNA secondary structures
The ensemble of RNA secondary structures of uniform sequences is studied
analytically. We calculate the partition function for very long sequences and
discuss how the cross-over length, beyond which asymptotic scaling laws apply,
depends on thermodynamic parameters. For realistic choices of parameters this
length can be much longer than natural RNA molecules. This has to be taken into
account when applying asymptotic theory to interpret experiments or numerical
results.Comment: 10 pages, 13 figures, published in Phys. Rev.
Le paludisme chez les employés d'une entreprise industrielle africaine (Bobo Dioulasso, Burkina Faso)
Electrostatics in wind-blown sand
Wind-blown sand, or "saltation," is an important geological process, and the
primary source of atmospheric dust aerosols. Significant discrepancies exist
between classical saltation theory and measurements. We show here that these
discrepancies can be resolved by the inclusion of sand electrification in a
physically based saltation model. Indeed, we find that electric forces enhance
the concentration of saltating particles and cause them to travel closer to the
surface, in agreement with measurements. Our results thus indicate that sand
electrification plays an important role in saltation.Comment: 4 journal pages, 5 figures, and supplementary material. Article is in
press at PR
The effects of mismatches on hybridization in DNA microarrays: determination of nearest neighbor parameters
Quantifying interactions in DNA microarrays is of central importance for a
better understanding of their functioning. Hybridization thermodynamics for
nucleic acid strands in aqueous solution can be described by the so-called
nearest-neighbor model, which estimates the hybridization free energy of a
given sequence as a sum of dinucleotide terms. Compared with its solution
counterparts, hybridization in DNA microarrays may be hindered due to the
presence of a solid surface and of a high density of DNA strands. We present
here a study aimed at the determination of hybridization free energies in DNA
microarrays. Experiments are performed on custom Agilent slides. The solution
contains a single oligonucleotide. The microarray contains spots with a perfect
matching complementary sequence and other spots with one or two mismatches: in
total 1006 different probe spots, each replicated 15 times per microarray. The
free energy parameters are directly fitted from microarray data. The
experiments demonstrate a clear correlation between hybridization free energies
in the microarray and in solution. The experiments are fully consistent with
the Langmuir model at low intensities, but show a clear deviation at
intermediate (non-saturating) intensities. These results provide new
interesting insights for the quantification of molecular interactions in DNA
microarrays.Comment: 31 pages, 5 figure
Statistical mechanics of secondary structures formed by random RNA sequences
The formation of secondary structures by a random RNA sequence is studied as
a model system for the sequence-structure problem omnipresent in biopolymers.
Several toy energy models are introduced to allow detailed analytical and
numerical studies. First, a two-replica calculation is performed. By mapping
the two-replica problem to the denaturation of a single homogeneous RNA in
6-dimensional embedding space, we show that sequence disorder is perturbatively
irrelevant, i.e., an RNA molecule with weak sequence disorder is in a molten
phase where many secondary structures with comparable total energy coexist. A
numerical study of various models at high temperature reproduces behaviors
characteristic of the molten phase. On the other hand, a scaling argument based
on the extremal statistics of rare regions can be constructed to show that the
low temperature phase is unstable to sequence disorder. We performed a detailed
numerical study of the low temperature phase using the droplet theory as a
guide, and characterized the statistics of large-scale, low-energy excitations
of the secondary structures from the ground state structure. We find the
excitation energy to grow very slowly (i.e., logarithmically) with the length
scale of the excitation, suggesting the existence of a marginal glass phase.
The transition between the low temperature glass phase and the high temperature
molten phase is also characterized numerically. It is revealed by a change in
the coefficient of the logarithmic excitation energy, from being disorder
dominated to entropy dominated.Comment: 24 pages, 16 figure
- …
