2,886 research outputs found

    Charge and momentum transfer in supercooled melts: Why should their relaxation times differ?

    Full text link
    The steady state values of the viscosity and the intrinsic ionic-conductivity of quenched melts are computed, in terms of independently measurable quantities. The frequency dependence of the ac dielectric response is estimated. The discrepancy between the corresponding characteristic relaxation times is only apparent; it does not imply distinct mechanisms, but stems from the intrinsic barrier distribution for α\alpha-relaxation in supercooled fluids and glasses. This type of intrinsic ``decoupling'' is argued not to exceed four orders in magnitude, for known glassformers. We explain the origin of the discrepancy between the stretching exponent β\beta, as extracted from ϵ(ω)\epsilon(\omega) and the dielectric modulus data. The actual width of the barrier distribution always grows with lowering the temperature. The contrary is an artifact of the large contribution of the dc-conductivity component to the modulus data. The methodology allows one to single out other contributions to the conductivity, as in ``superionic'' liquids or when charge carriers are delocalized, implying that in those systems, charge transfer does not require structural reconfiguration.Comment: submitted to J Chem Phy

    Simple Lattice-Models of Ion Conduction: Counter Ion Model vs. Random Energy Model

    Full text link
    The role of Coulomb interaction between the mobile particles in ionic conductors is still under debate. To clarify this aspect we perform Monte Carlo simulations on two simple lattice models (Counter Ion Model and Random Energy Model) which contain Coulomb interaction between the positively charged mobile particles, moving on a static disordered energy landscape. We find that the nature of static disorder plays an important role if one wishes to explore the impact of Coulomb interaction on the microscopic dynamics. This Coulomb type interaction impedes the dynamics in the Random Energy Model, but enhances dynamics in the Counter Ion Model in the relevant parameter range.Comment: To be published in Phys. Rev.

    Contributions to the mixed-alkali effect in molecular dynamics simulations of alkali silicate glasses

    Full text link
    The mixed-alkali effect on the cation dynamics in silicate glasses is analyzed via molecular dynamics simulations. Observations suggest a description of the dynamics in terms of stable sites mostly specific to one ionic species. As main contributions to the mixed--alkali slowdown longer residence times and an increased probability of correlated backjumps are identified. The slowdown is related to the limited accessibility of foreign sites. The mismatch experienced in a foreign site is stronger and more retarding for the larger ions, the smaller ions can be temporarily accommodated. Also correlations between unlike as well as like cations are demonstrated that support cooperative behavior.Comment: 10 pages, 12 figures, 1 table, revtex4, submitted to Phys. Rev.

    Deflation techniques for finding distinct solutions of nonlinear partial differential equations

    Get PDF
    Nonlinear systems of partial differential equations (PDEs) may permit several distinct solutions. The typical current approach to finding distinct solutions is to start Newton's method with many different initial guesses, hoping to find starting points that lie in different basins of attraction. In this paper, we present an infinite-dimensional deflation algorithm for systematically modifying the residual of a nonlinear PDE problem to eliminate known solutions from consideration. This enables the Newton-Kantorovitch iteration to converge to several different solutions, even starting from the same initial guess. The deflated Jacobian is dense, but an efficient preconditioning strategy is devised, and the number of Krylov iterations are observed not to grow as solutions are deflated. The power of the approach is demonstrated on several problems from special functions, phase separation, differential geometry and \ud fluid mechanics that permit distinct solutions

    Cost-optimal spare parts inventory planning for wind energy systems

    Get PDF
    For safe and reliable machine operation, maintenance, repair and overhaul (MRO) activities are required. Spare parts demand forecasting and inventory planning, which is an important part of MRO activities, must be accurate to avoid costs because of surplus spare parts or machine downtimes. The restriction of reduced accessibility to wind turbines during the winter months also has to be taken into account when planning maintenance activities and spare part inventories for wind farms. The presented model provides the most economic stock quantity under given environmental conditions. It is based on the proportional hazards model, which is extended to calculate the remaining useful component life time and derive required spare parts inventory levels. The presented model is validated, using condition monitoring data and environmental data of an onshore wind farm. Comparison of the spare part inventory prediction to wind farm's failure data proves the model's accuracy. Parameter analyses show that the model can be applied for spare parts inventory planning under consideration of environmental conditions

    Nitrogen compounds and ozone in the stratosphere: comparison of MIPAS satellite data with the Chemistry Climate Model ECHAM5/MESSy1

    Get PDF
    International audienceThe chemistry climate model ECHAM5/MESSy1 (E5/M1) in a setup extending from the surface to 80 km with a vertical resolution of about 600 m near the tropopause with nudged tropospheric meteorology allows a direct comparison with satellite data of chemical species at the same time and location. Here we present results out of a transient 10 years simulation for the period of the Antarctic vortex split in September 2002, where data of MIPAS on the ENVISAT-satellite are available. For the first time this satellite instrument opens the opportunity, to evaluate all stratospheric nitrogen containing species simultaneously with a good global coverage, including the source gas N2O which allows an estimate for NOx-production in the stratosphere. We show correlations between simulated and observed species in the altitude region between 10 and 50 hpa for different latitude belts, together with the Probability Density Functions (PDFs) of model results and observations. This is supplemented by global charts on pressure levels showing the satellite data and the simulated data sampled at the same time and location. We demonstrate that the model in most cases captures the partitioning in the nitrogen family, the diurnal cycles and the spatial distribution within experimental uncertainty. There appears to be, however, a problem to reproduce the observed nighttime partitioning between N2O5 and NO2 in the middle stratosphere
    corecore