1,713 research outputs found

    A general equilibrium theory of college with education subsidies, in-school labor supply, and borrowing constraints

    Get PDF
    This paper analyzes the effectiveness of three different types of education policies: tuition subsidies (broad based, merit based, and flat tuition), grant subsidies (broad based and merit based), and loan limit restrictions. We develop a quantitative theory of college within the context of general equilibrium overlapping generations economy. College is modeled as a multi-period risky investment with endogenous enrollment, time-to-degree, and dropout behavior. Tuition costs can be financed using federal grants, student loans, and working while at college. We show that our model accounts for the main statistics regarding education (enrollment rate, dropout rate, and time to degree) while matching the observed aggregate wage premiums. Our model predicts that broad based tuition subsidies and grants increase college enrollment. However, due to the correlation between ability and financial resources most of these new students are from the lower end of the ability distribution and eventually dropout or take longer than average to complete college. Merit based education policies counteract this adverse selection problem but at the cost of a muted enrollment response. Our last policy experiment highlights an important interaction between the labor-supply margin and borrowing. A significant decrease in enrollment is found to occur only when borrowing constraints are severely tightened and the option to work while in school is removed. This result suggests that previous models that have ignored the student's labor supply when analyzing borrowing constraints may be insufficient.Education - Economic aspects ; College costs

    Coincident brane nucleation and the neutralization of \Lambda

    Get PDF
    Nucleation of branes by a four-form field has recently been considered in string motivated scenarios for the neutralization of the cosmological constant. An interesting question in this context is whether the nucleation of stacks of coincident branes is possible, and if so, at what rate does it proceed. Feng et al. have suggested that, at high ambient de Sitter temperature, the rate may be strongly enhanced, due to large degeneracy factors associated with the number of light species living on the worldsheet. This might facilitate the quick relaxation from a large effective cosmological constant down to the observed value. Here, we analyse this possibility in some detail. In four dimensions, and after the moduli are stabilized, branes interact via repulsive long range forces. Because of that, the Coleman-de Luccia (CdL) instanton for coincident brane nucleation may not exist, unless there is some short range interaction which keeps the branes together. If the CdL instanton exists, we find that the degeneracy factor depends only mildly on the ambient de Sitter temperature, and does not switch off even in the case of tunneling from flat space. This would result in catastrophic decay of the present vacuum. If, on the contrary, the CdL instanton does not exist, coindident brane nucleation may still proceed through a "static" instanton, representing pair creation of critical bubbles -- a process somewhat analogous to thermal activation in flat space. In that case, the branes may stick together due to thermal symmetry restoration, and the pair creation rate depends exponentially on the ambient de Sitter temperature, switching off sharply as the temperature approaches zero. Such static instanton may be well suited for the "saltatory" relaxation scenario proposed by Feng et al.Comment: 38 pages, 6 figures. Replaced with typos correcte

    Second Order Perturbations of a Macroscopic String; Covariant Approach

    Get PDF
    Using a world-sheet covariant formalism, we derive the equations of motion for second order perturbations of a generic macroscopic string, thus generalizing previous results for first order perturbations. We give the explicit results for the first and second order perturbations of a contracting near-circular string; these results are relevant for the understanding of the possible outcome when a cosmic string contracts under its own tension, as discussed in a series of papers by Vilenkin and Garriga. In particular, second order perturbations are necessaary for a consistent computation of the energy. We also quantize the perturbations and derive the mass-formula up to second order in perturbations for an observer using world-sheet time τ\tau . The high frequency modes give the standard Minkowski result while, interestingly enough, the Hamiltonian turns out to be non-diagonal in oscillators for low-frequency modes. Using an alternative definition of the vacuum, it is possible to diagonalize the Hamiltonian, and the standard string mass-spectrum appears for all frequencies. We finally discuss how our results are also relevant for the problems concerning string-spreading near a black hole horizon, as originally discussed by Susskind.Comment: New discussion about the quantum mass-spectrum in chapter

    A primer on social security systems and reforms

    Get PDF
    This article reviews the characteristics of different social security systems. Many configurations arise depending on the nature of a system’s funding and determination of benefits. Many reforms propose changing the U.S. Social Security system. The authors focus their analysis of the transition from a pay-as-you-go to a fully funded system. They argue that the key component of any reform is the treatment of the implicit liabilities of a country’s social security system. The welfare gains accruing to some cohorts as a result of such reforms usually stem from either a partial or complete default on the implicit debt of the system, and in that sense the gains imply only a redistribution of welfare across agents. In contrast, the elimination of existing distortions in social security financing can generate efficiency gains, allowing for welfare improvements for all agents. This result shifts the focus from the nature of the system itself and centers the debate on the distortions associated with social security financing.Social security

    Zero-th law in structural glasses: an example

    Full text link
    We investigate the validity of a zeroth thermodynamic law for non-equilibrium systems. In order to describe the thermodynamics of the glassy systems, it has been introduced an extra parameter, the effective temperature which generalizes the fluctuation-dissipation theorem (FDT) to off-equilibrium systems and supposedly describes thermal fluctuations around the aging state. In particular we analyze two coupled systems of harmonic oscillators with Monte Carlo dynamics. We study in detail two types of dynamics: sequential dynamics, where the coupling between the subsystems comes only from the Hamiltonian; and parallel dynamics where there is another source of coupling: the dynamics. We show how in the first case the effective temperatures of the two interacting subsystems are different asymptotically due to the smallness of the thermal conductivity in the aging regime. This explains why, in structural glasses, different interacting degrees of freedom can stay at different effective temperatures, and never thermalize.Comment: 10 pages. Contribution to the Proceedings of the ESF SPHINX meeting `Glassy behaviour of kinetically constrained models' (Barcelona, March 22-25, 2001). To appear in a special issue of J. Phys. Cond. Mat

    Cosmology in a brane-universe

    Get PDF
    This contribution presents the cosmological models with extra dimensions that have been recently elaborated, which assume that ordinary matter is confined on a surface, called brane, embedded in a higher dimensional spacetime.Comment: 12 pages; Invited review talk at the JENAM 2002 workshop on "The cosmology of extra dimensions and varying fundamental constants", Porto, Portugal, September 200

    Solutions to the cosmological constant problems

    Get PDF
    We critically review several recent approaches to solving the two cosmological constant problems. The "old" problem is the discrepancy between the observed value of Λ\Lambda and the large values suggested by particle physics models. The second problem is the "time coincidence" between the epoch of galaxy formation tGt_G and the epoch of Λ\Lambda-domination t_\L. It is conceivable that the "old" problem can be resolved by fundamental physics alone, but we argue that in order to explain the "time coincidence" we must account for anthropic selection effects. Our main focus here is on the discrete-Λ\Lambda models in which Λ\Lambda can change through nucleation of branes. We consider the cosmology of this type of models in the context of inflation and discuss the observational constraints on the model parameters. The issue of multiple brane nucleation raised by Feng {\it et. al.} is discussed in some detail. We also review continuous-\L models in which the role of the cosmological constant is played by a slowly varying potential of a scalar field. We find that both continuous and discrete models can in principle solve both cosmological constant problems, although the required values of the parameters do not appear very natural. M-theory-motivated brane models, in which the brane tension is determined by the brane coupling to the four-form field, do not seem to be viable, except perhaps in a very tight corner of the parameter space. Finally, we point out that the time coincidence can also be explained in models where Λ\Lambda is fixed, but the primordial density contrast Q=δρ/ρQ=\delta\rho/\rho is treated as a random variable.Comment: 30 pages, 3 figures, two notes adde

    Transcriptomic analysis of the interaction geminivirus-tomato

    Get PDF
    Geminiviridae family is one of the main families of plant pathogenic viruses with large relevance as they cause great losses worldwide in commercial crops and crops destined to food production. Geminiviruses present a little single-stranded DNA genome and a capsid composed of two twin icosahedral parts. Tomato Yellow Leaf Curl Virus (TYLCV) belongs to the Begomovirus genus and is transmitted by the whitefly Bemisia tabaci. With only 6 viral proteins, this geminivirus must create a proper environment for viral replication, transcription and propagation. Behind the apparent simplicity of geminiviruses lies a complex network of molecular interactions with their host and even their natural vector, which induces a wide variety of transcriptional, post-transcriptional and chromatinic changes in both the plant and the geminivirus. In order to study these changes and decipher the effects of the transmission vector on the infection, we carried out a global approximation of the TYLCV-tomato interaction to generate integrated single-base resolution maps by NGS (next-generation sequencing) of the transcriptome, smallRNAome and methylome of the pathogen and the host. Tomato plants (Moneymaker) were infected with TYLCV under controlled conditions of light and temperature using Agrobacterium tumefaciens or its natural vector. Apical tissue from these plants was collected at different time points (2, 7, 14 and 21 days after inoculation), and three biological replicas were generated for each treatment and time. Total RNA and DNA was extracted and analysed by RNA-Seq, smallRNA-Seq and Bisulfite-Seq. The transcriptome of the tomato-TYLCV interaction will be presented and discussed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Dark matter to dark energy transition in k-essence cosmologies

    Get PDF
    We implement the transition from dark matter to dark energy in k-essence cosmologies for a very large set of kinetic functions FF, in a way alternative to recent proposals which use generalized Chaplygin gas and transient models. Here we require that the pressure admits a power-law expansion around some value of the kinetic energy where the pressure vanishes. In addition, for suitable values of the parameters of the model, the speed of sound of the dark matter will be low. We first present the discussion in fairly general terms, and later consider for illustration two examples.Comment: 5 pages, revte

    Instability of a membrane intersecting a black hole

    Get PDF
    The stability of a Nambu-Goto membrane at the equatorial plane of the Reissner-Nordstr{\o}m-de Sitter spacetime is studied. The covariant perturbation formalism is applied to study the behavior of the perturbation of the membrane. The perturbation equation is solved numerically. It is shown that a membrane intersecting a charged black hole, including extremely charged one, is unstable and that the positive cosmological constant strengthens the instability.Comment: 12 pages, 3 figures, to be published in Physical Review
    corecore