1,183 research outputs found

    A Direct Multigrid Poisson Solver for Oct-Tree Adaptive Meshes

    Full text link
    We describe a finite-volume method for solving the Poisson equation on oct-tree adaptive meshes using direct solvers for individual mesh blocks. The method is a modified version of the method presented by Huang and Greengard (2000), which works with finite-difference meshes and does not allow for shared boundaries between refined patches. Our algorithm is implemented within the FLASH code framework and makes use of the PARAMESH library, permitting efficient use of parallel computers. We describe the algorithm and present test results that demonstrate its accuracy.Comment: 10 pages, 6 figures, accepted by the Astrophysical Journal; minor revisions in response to referee's comments; added char

    The Weibull-Geometric distribution

    Full text link
    In this paper we introduce, for the first time, the Weibull-Geometric distribution which generalizes the exponential-geometric distribution proposed by Adamidis and Loukas (1998). The hazard function of the last distribution is monotone decreasing but the hazard function of the new distribution can take more general forms. Unlike the Weibull distribution, the proposed distribution is useful for modeling unimodal failure rates. We derive the cumulative distribution and hazard functions, the density of the order statistics and calculate expressions for its moments and for the moments of the order statistics. We give expressions for the R\'enyi and Shannon entropies. The maximum likelihood estimation procedure is discussed and an algorithm EM (Dempster et al., 1977; McLachlan and Krishnan, 1997) is provided for estimating the parameters. We obtain the information matrix and discuss inference. Applications to real data sets are given to show the flexibility and potentiality of the proposed distribution

    The hyperfine structure in the rotational spectrum of CF+

    Full text link
    Context. CF+ has recently been detected in the Horsehead and Orion Bar photo-dissociation regions. The J=1-0 line in the Horsehead is double-peaked in contrast to other millimeter lines. The origin of this double-peak profile may be kinematic or spectroscopic. Aims. We investigate the effect of hyperfine interactions due to the fluorine nucleus in CF+ on the rotational transitions. Methods. We compute the fluorine spin rotation constant of CF+ using high-level quantum chemical methods and determine the relative positions and intensities of each hyperfine component. This information is used to fit the theoretical hyperfine components to the observed CF+ line profiles, thereby employing the hyperfine fitting method in GILDAS. Results. The fluorine spin rotation constant of CF+ is 229.2 kHz. This way, the double-peaked CF+ line profiles are well fitted by the hyperfine components predicted by the calculations. The unusually large hyperfine splitting of the CF+ line therefore explains the shape of the lines detected in the Horsehead nebula, without invoking intricate kinematics in the UV-illuminated gas.Comment: 2 pages, 1 figure, Accepted for publication in A&

    Active Mass Under Pressure

    Full text link
    After a historical introduction to Poisson's equation for Newtonian gravity, its analog for static gravitational fields in Einstein's theory is reviewed. It appears that the pressure contribution to the active mass density in Einstein's theory might also be noticeable at the Newtonian level. A form of its surprising appearance, first noticed by Richard Chase Tolman, was discussed half a century ago in the Hamburg Relativity Seminar and is resolved here.Comment: 28 pages, 4 figure

    Scattering statistics of rock outcrops: Model-data comparisons and Bayesian inference using mixture distributions

    Get PDF
    The probability density function of the acoustic field amplitude scattered by the seafloor was measured in a rocky environment off the coast of Norway using a synthetic aperture sonar system, and is reported here in terms of the probability of false alarm. Interpretation of the measurements focused on finding appropriate class of statistical models (single versus two-component mixture models), and on appropriate models within these two classes. It was found that two-component mixture models performed better than single models. The two mixture models that performed the best (and had a basis in the physics of scattering) were a mixture between two K distributions, and a mixture between a Rayleigh and generalized Pareto distribution. Bayes' theorem was used to estimate the probability density function of the mixture model parameters. It was found that the K-K mixture exhibits significant correlation between its parameters. The mixture between the Rayleigh and generalized Pareto distributions also had significant parameter correlation, but also contained multiple modes. We conclude that the mixture between two K distributions is the most applicable to this dataset.Comment: 15 pages, 7 figures, Accepted to the Journal of the Acoustical Society of Americ

    Cryogenic R&D at the CERN Central Cryogenic Laboratory

    Get PDF
    The Central Cryogenic Laboratory operates since many years at CERN in the framework of cryogenic R&D for accelerators and experiments. The laboratory hosts several experimental posts for small cryogen ic tests, all implemented with pumping facility for GHe and vacuum, and is equipped with a He liquefier producing 6.105 l/year, which is distributed in dewars. Tests include thermomechanical qualifica tion of structural materials, cryogenic and vacuum qualification of prototypes, evaluation of thermal losses of components. Some of the most relevant results obtained at the laboratory in the last yea rs are outlined in this paper

    Complete Solving for Explicit Evaluation of Gauss Sums in the Index 2 Case

    Full text link
    Let pp be a prime number, q=pfq=p^f for some positive integer ff, NN be a positive integer such that gcd(N,p)=1\gcd(N,p)=1, and let \k be a primitive multiplicative character of order NN over finite field \fq. This paper studies the problem of explicit evaluation of Gauss sums in "\textsl{index 2 case}" (i.e. f=\f{\p(N)}{2}=[\zn:\pp], where \p(\cd) is Euler function). Firstly, the classification of the Gauss sums in index 2 case is presented. Then, the explicit evaluation of Gauss sums G(\k^\la) (1\laN-1) in index 2 case with order NN being general even integer (i.e. N=2^{r}\cd N_0 where r,N0r,N_0 are positive integers and N03N_03 is odd.) is obtained. Thus, the problem of explicit evaluation of Gauss sums in index 2 case is completely solved

    A note on the sign (unit root) ambiguities of Gauss sums in index 2 and 4 cases

    Full text link
    Recently, the explicit evaluation of Gauss sums in the index 2 and 4 cases have been given in several papers (see [2,3,7,8]). In the course of evaluation, the sigh (or unit root) ambiguities are unavoidably occurred. This paper presents another method, different from [7] and [8], to determine the sigh (unit root) ambiguities of Gauss sums in the index 2 case, as well as the ones with odd order in the non-cyclic index 4 case. And we note that the method in this paper are more succinct and effective than [8] and [7]

    Physics in Riemann's mathematical papers

    Full text link
    Riemann's mathematical papers contain many ideas that arise from physics, and some of them are motivated by problems from physics. In fact, it is not easy to separate Riemann's ideas in mathematics from those in physics. Furthermore, Riemann's philosophical ideas are often in the background of his work on science. The aim of this chapter is to give an overview of Riemann's mathematical results based on physical reasoning or motivated by physics. We also elaborate on the relation with philosophy. While we discuss some of Riemann's philosophical points of view, we review some ideas on the same subjects emitted by Riemann's predecessors, and in particular Greek philosophers, mainly the pre-socratics and Aristotle. The final version of this paper will appear in the book: From Riemann to differential geometry and relativity (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017
    corecore