4,851 research outputs found
Relations between some invariants of algebraic varieties in positive characteristic
We discuss relations between certain invariants of varieties in positive
characteristic, like the a-number and the height of the Artin-Mazur formal
group. We calculate the a-number for Fermat surfacesComment: 13 page
Neutrino Factories: Physics Potential
The physics potential of low-performance and high-performance neutrino
factories is briefly reviewed..Comment: Talk presented at NUFACT02, London, 1-6 July, 2002. 8 pages, 5
figure
Matter Enhanced Neutrino Oscillations with a Realistic Earth Density Profile
We have investigated matter enhanced neutrino oscillations with a
mantle-core-mantle step function and a realistic Earth matter density profile
in both a two and a three neutrino scenario. We found that the realistic Earth
matter density profile can be well approximated with the mantle-core-mantle
step function and that there could be an influence on the oscillation channel
due to resonant enhancement of one of the mixing angles.Comment: 8 pages, 5 figures (PostScript), MPLA LaTe
Evaluation of linear ozone photochemistry parametrizations in a stratosphere-troposphere data assimilation system
This paper evaluates the performance of various linear ozone photochemistry parametrizations using the stratosphere-troposphere data assimilation system of the Met Office. A set of experiments were run for the period 23 September 2003 to 5 November 2003 using the Cariolle (v1.0 and v2.1), LINOZ and Chem2D-OPP (v0.1 and v2.1) parametrizations. All operational meteorological observations were assimilated, together with ozone retrievals from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). Experiments were validated against independent data from the Halogen Occultation Experiment (HALOE) and ozonesondes. Additionally, a simple offline method for comparing the parametrizations is introduced. <br><br> It is shown that in the upper stratosphere and mesosphere, outside the polar night, ozone analyses are controlled by the photochemistry parametrizations and not by the assimilated observations. The most important factor in getting good results at these levels is to pay attention to the ozone and temperature climatologies in the parametrizations. There should be no discrepancies between the climatologies and the assimilated observations or the model, but there is also a competing demand that the climatologies be objectively accurate in themselves. Conversely, in the lower stratosphere outside regions of heterogeneous ozone depletion, the ozone analyses are dominated by observational increments and the photochemistry parametrizations have little influence. <br><br> We investigate a number of known problems in LINOZ and Cariolle v1.0 in more detail than previously, and we find discrepancies in Cariolle v2.1 and Chem2D-OPP v2.1, which are demonstrated to have been removed in the latest available versions (v2.8 and v2.6 respectively). In general, however, all the parametrizations work well through much of the stratosphere, helped by the presence of good quality assimilated MIPAS observations
Modelling storm response on gravel beaches using XBeach-G
EPRSC New Understanding and Prediction of Storm Impacts on Gravel beaches (NUPSIG; EP/H040056/1) and Adaptation and Resilience of Coastal Energy Supply (ARCEoS; EP/IO35390/1). The full text is under embargo until 01.12.15. Published by ICE Publishin
New electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range
We present a method for producing sub-100 fs electron bunches that are
suitable for single-shot ultrafast electron diffraction experiments in the 100
keV energy range. A combination of analytical results and state-of-the-art
numerical simulations show that it is possible to create 100 keV, 0.1 pC, 20 fs
electron bunches with a spotsize smaller than 500 micron and a transverse
coherence length of 3 nm, using established technologies in a table-top set-up.
The system operates in the space-charge dominated regime to produce
energy-correlated bunches that are recompressed by established radio-frequency
techniques. With this approach we overcome the Coulomb expansion of the bunch,
providing an entirely new ultrafast electron diffraction source concept
Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection
We propose a method for detecting significant interactions in very large
multivariate spatial point patterns. This methodology develops high dimensional
data understanding in the point process setting. The method is based on
modelling the patterns using a flexible Gibbs point process model to directly
characterise point-to-point interactions at different spatial scales. By using
the Gibbs framework significant interactions can also be captured at small
scales. Subsequently, the Gibbs point process is fitted using a
pseudo-likelihood approximation, and we select significant interactions
automatically using the group lasso penalty with this likelihood approximation.
Thus we estimate the multivariate interactions stably even in this setting. We
demonstrate the feasibility of the method with a simulation study and show its
power by applying it to a large and complex rainforest plant population data
set of 83 species
Heavy quark production via leptoquarks at a neutrino factory
The proposed neutrino factory (NF) based on a muon storage ring (MSR) is an
ideal place to look for heavy quark production via neutral current (NC) and
charged current (CC) interactions. In this article, we address the issue of
contribution coming from mediating leptoquarks (LQ) in interactions leading to the production of at a
MSR and investigate the region where LQ interactions are significant in the
near-site experiments.Comment: 12 pages latex, 10 ps figures, uses axocolour.sty, Slightly revised
version to appear in PR
Migrating a Large Scale Legacy Application to SOA: Challenges and Lessons Learned
Abstract—This paper presents the findings of a case study of a large scale legacy to service-oriented architecture migration process in the payments domain of a Dutch bank. The paper presents the business drivers that initiated the migration, and describes a 4-phase migration process. For each phase, the paper details benefits of using the techniques, best practices that contribute to the success, and possible challenges that are faced during migration. Based on these observations, the findings are discussed as lessons learned, including the implications of using reverse engineering techniques to facilitate the migration process, adopting a pragmatic migration realization approach, emphasizing the organizational and business perspectives, and harvesting knowledge of the system throughout the system’s life cycle. I
Matter profile effect in neutrino factory
We point out that the matter profile effect --- the effect of matter density
fluctuation on the baseline --- is very important to estimate the parameters in
a neutrino factory with a very long baseline. To make it clear, we propose the
method of the Fourier series expansion of the matter profile. By using this
method, we can take account of both the matter profile effect and its
ambiguity. For very long baseline experiment, such as L=7332km, in the analysis
of the oscillation phenomena we need to introduce a new parameter ---
the Fourier coefficient of the matter profile --- as a theoretical parameter to
deal with the matter profile effects.Comment: 21 pages, 15 figure
- …
